首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An exact equation describing freely propagating stationary flames with arbitrary values of the gas expansion coefficient is obtained. This equation respects all conservation laws at the flame front, and provides a consistent nonperturbative account of the effect of vorticity produced by the curved flame on the front structure. It is verified that the new equation is in agreement with the approximate equations derived previously in the case of weak gas expansion.  相似文献   

2.
3.
4.
5.
The paper analyses the hydrodynamic instability of a flame propagating in the space between two parallel plates in the presence of gas flow. The linear analysis was performed in the framework of a two-dimensional model that describes the averaged gas flow in the space between the plates and the perturbations development of two-dimensional combustion wave. The model includes the parametric dependences of the flame front propagation velocity on its local curvature and on the combustible gas velocity averaged along the height of the channel. It is assumed that the viscous gas flow changes the surface area of the flame front and thereby affects the propagation velocity of the two-dimensional combustion wave. In the absence of the influence of the channel walls on the gas flow, the model transforms into the Darrieus–Landau model of flame hydrodynamic instability. The dependences of the instability growth rate on the wave vector of disturbances, the velocity of the unperturbed gas flow, the viscous friction coefficients and other parameters of the problem are obtained. It is shown that the viscous gas flow in the channel can lead, in some cases, to a significant increase in instability compared with a flame propagating in free space. In particular, the instability increment depends on the direction of the gas flow with respect direction of the flame propagation. In the case when the gas flow moves in the opposite direction to the direction of the flame propagation, the pulsating instability can appear.  相似文献   

6.
A time-dependent nonlinear equation for a nonstationary curved flame front of an arbitrary expansion coefficient is derived under the assumptions of a small but finite flame thickness and weak nonlinearity. On the basis of the derived equation, stability of two-dimensional curved stationary flames propagating in tubes with ideally adiabatic and slip walls is studied. The stability analysis shows that curved stationary flames become unstable for sufficiently wide tubes. The obtained stability limits are in a good agreement with the results of numerical simulations of flame dynamics and with semiqualitative stability analysis of curved stationary flames. Possible outcomes of the obtained instability at the nonlinear stage are discussed. The instability may result in extra wrinkles at a flame front close to the stability limits and in self-turbulization of the flame far from the limits. The self-turbulization can also be interpreted as a fractal structure. The fractal dimension of a flame front and velocity of a self-turbulized flame are evaluated.  相似文献   

7.
8.
Experimental data is presented for the interaction between a propagating flame and a simple vortex flow field structure generated in the wake of solid obstacles. The interaction between gas movement and obstacles creates vortex shedding forming a simple flow field recirculation. The presence of the simple turbulent structure within the gas mixture curls the flame front increasing curvature and enhancing burning rate. A novel twin camera Particle Image Velocimetry, PIV, was employed to characterise the flow field recirculation and the interaction with the flame front. The technique allowed the quantification of the flame/vortex interaction. The twin camera technique provides data to define the spatial variation of both the velocity of the flow field and flame front. Experimentally obtained values of local flame displacement speed and flame stretch rate are presented for simple flame/vortex interactions.  相似文献   

9.
1引言近十几年来,国内外许多人对火焰沿薄燃料层的传播进行了研究,但很少涉及到火焰沿柱状燃料的传播。图1为所研究问题的物理模型。火焰的传播涉及到气固两相的相互作用,两相界面上存在能量和质量的交换,气相中存在着气气间的化学反应,固相中存在着裂解反应。当参考坐标系团结在火焰前锋上时,该火焰传播问题成为一准稳态问题,燃料以一固定速度供给火焰。2数学模型2.1守恒方程气相的所有守恒方程均服从下列通用方程:其中、,L和一分别表示通用变量、广义扩散系数和广义源项。固相包括:质量守恒方程:。。能量守恒方程:2.2边界…  相似文献   

10.
Dynamical behaviour of the premixed flame propagating in the inert high-porosity micro-fibrous porous media has been studied numerically. Effects of mixture filtration velocity, equivalence ratio and burner transverse size on the flame structure have been investigated and the regions of existence of different combustion regimes have been determined. It was found that the influence of the hydrodynamic instability on the flame dynamics is significant in the case of the moderate and high filtration velocities and this effect is negligible at the low velocities. At the moderate filtration velocities the effect of hydrodynamic instability manifests in the flame front deformation and in particular in the flame inclination. It was found that the flame can be stabilized within the whole interval of the filtration gas velocity, whereas in the ordinary porous media the standing wave is settled only at fixed value of gas filtration velocity. This finding is in line with recent experimental results on combustion in micro-fibrous porous media (Yang et al., Combust. Sci. Tech. 181 (2009), 1–16). Possible physical interpretation of the flame anchoring effect may be given on the base of present numerical analysis. At the high filtration velocities the hydrodynamic instability manifests itself in periodical appearance of the moving wrinkles on the flame front surface which forms non stationary high temperature trailing spots behind the leading part of the flame front. Such dynamics may be associated with splitting wave structures which were revealed in previous experiments (Yang et al., Combust. Sci. Tech. 181 (2009), 1–16).  相似文献   

11.
12.
A nonlinear equation describing curved stationary flames with arbitrary gas expansion theta = rho(fuel)/rho(burnt) is obtained in a closed form without an assumption of weak nonlinearity. The equation respects all conservation laws and takes into account vorticity production in the flame. In the scope of the asymptotic expansion for theta -->1, the new equation solves the problem of stationary flame propagation with accuracy of the sixth order in theta - 1. Its analytical solutions give the flame velocity in tubes of arbitrary width, which agrees with available results of direct numerical modeling.  相似文献   

13.
A three-dimensional reaction-diffusion model for lean low-Lewis-number premixed flames with radiative heat losses propagating in divergent channel is studied numerically. Effects of inlet gas velocity and heat-loss intensity on flame structure at low Lewis numbers are investigated. It is found that continuous flame front exists at small heat losses and the separate flame balls settled within restricted domain inside the divergent channel at large heat losses. It is shown that the time averaged flame balls coordinate may be considered as important characteristic analogous to coordinate of continuous flame stabilized in divergent channel.  相似文献   

14.
The nonlinear problem of the propagation of curved stationary flames in tubes of different widths is studied by means of direct numerical simulation of the complete system of hydrodynamic equations including thermal conduction, viscosity, fuel diffusion and chemical kinetics. While only a planar flame can propagate in a narrow tube of width smaller than half of the cut–off wavelength determined by the linear theory of the hydrodynamic instability of a flame front, in wider tubes stationary curved flames propagate with velocities considerably larger than the corresponding velocity of a planar flame. It is shown that only simple ‘single-hump’ slanted stationary flames are possible in wide tubes, and ‘multi–hump’ flames are possible in wide tubes only as a nonstationary mode of flame propagation. The stability limits of curved stationary flames in wider tubes and the secondary Landau–Darrieus instability are investigated. The dependence of the velocity of the stationary flame on the tube width is studied. The analytical theory describes the flame reasonably well when the tube width does not exceed some critical value. The dynamics of the flame in wider tubes is shown to be governed by a large–scale stability mechanism resulting in a highly slanted flame front. In wide tubes, the skirt of the slanted flame remains smooth with the length of the skirt and the flame velocity increasing progressively with the increase of the tube width above the second critical value. Results of the analytical theory and numerical simulations are discussed and compared with the experimental data for laminar flames in wide tubes.  相似文献   

15.
The flame acceleration and the physical mechanism underlying the deflagration-to-detonation transition (DDT) have been studied experimentally, theoretically, and using a two-dimensional gasdynamic model for a hydrogen-oxygen gas mixture by taking into account the chain chemical reaction kinetics for eight components. A flame accelerating in a tube is shown to generate shock waves that are formed directly at the flame front just before DDT occurred, producing a layer of compressed gas adjacent to the flame front. A mixture with a density higher than that of the initial gas enters the flame front, is heated, and enters into reaction. As a result, a high-amplitude pressure peak is formed at the flame front. An increase in pressure and density at the leading edge of the flame front accelerates the chemical reaction, causing amplification of the compression wave and an exponentially rapid growth of the pressure peak, which “drags” the flame behind. A high-amplitude compression wave produces a strong shock immediately ahead of the reaction zone, generating a detonation wave. The theory and numerical simulations of the flame acceleration and the new physical mechanism of DDT are in complete agreement with the experimentally observed flame acceleration, shock formation, and DDT in a hydrogen-oxygen gas mixture.  相似文献   

16.
17.
The zone conditional conservation equations are derived and validated against the DNS data of a freely propagating one-dimensional turbulent premixed flame. Conditional flow velocities are calculated by the conditional continuity and momentum equations, and a modeled transport equation for the Reynolds average reaction progress variable. An asymptotic formula for turbulent burning velocity is obtained with the effects of a finite Damköhler number accounted for as an additional factor. It is shown that flame generated turbulence is primarily due to correlations between fluctuating gas velocities and fluctuating unit normal vector on a flame surface. More investigation is required to validate general predictive capability of the derived conditional conservation equations and the relationships modeled for closure.  相似文献   

18.
19.
Large-scale two-dimensional numerical simulations of thermodiffusively unstable, lean, premixed hydrogen flames have been performed using detailed finite rate chemistry to analyze flame intrinsic scales. The simulations feature a long integration time and large domain sizes to rule out effects of confinement on the dynamics of the flame front. For sufficiently large domain sizes, the total consumption speed of the flame is found to become independent of the domain size. An assessment of the characteristic scales of the flame front corrugation reveals the existence of a smallest and a largest flame intrinsic length scale. The smallest length manifests itself by local cusps, which lead to the formation of characteristic cells along the flame front. Their size is remarkably close to the most unstable wavelength predicted by a linear stability analysis of the flame front evolution in the linear regime. Independently of the domain size, a specific largest flame intrinsic structure, here referred to as flame finger, emerges from the interaction of multiple small-scale cusps. Thermodiffusively unstable flames are found to periodically form and destroy these flame fingers, but the formation of a global cusp that is known to emerge for purely hydrodynamically unstable flames is suppressed. The finite size of the largest scale fingers is explained by an instability in their movement. As they proceed towards the unburnt mixture, they tend to tilt and move laterally, thereby eventually being incorporated again by the rest of the flame. This behavior arises from the interaction of the flame fingers and the diverging velocity field ahead of them. Finally, the effect of equivalence ratio and unburnt gas temperature is investigated showing that flame fingers are found to develop only in case of a thermodiffusively unstable flame.  相似文献   

20.
An understanding of flame propagation needs the knowledge of the flame location and of the velocity field near the front. Time resolved laser Tomography coupled with high resolution cross correlation PIV has been developed. The method is based on the use of a copper vapor laser and a highspeed camera. The seeding level used for tomography provides an excellent resolution of the flame location and of the velocity vectors in the fresh gases. Experiment is conducted in a simulated engine where turbulence is controlled by means of a perforated grid. Interest is shown for the determination of laminar burning velocity and for the study of interaction between the flame front and the turbulent structures. Perspectives of stereoscopic PIV are also started on. It is shown that the existence of a normal component to the sheet plane of the velocity can lead to an erroneous flame velocity determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号