首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface charges can modify the elastic modulus of nanostructure, leading to the change of the phonon and thermal properties in semiconductor nanostructure. In this work, the influence of surface charges on the phonon properties and phonon thermal conductivity of GaN nanofilm are quantitatively investigated. In the framework of continuum mechanics,the modified elastic modulus can be derived for the nanofilm with surface charges. The elastic model is presented to analyze the phonon properties such as the phonon dispersion relation, phonon group velocity, density of states of phonons in nanofilm with the surface charges. The phonon thermal conductivity of nanofilm can be obtained by considering surface charges. The simulation results demonstrate that surface charges can significantly change the phonon properties and thermal conductivity in a GaN nanofilm. Positive surface charges reduce the phonon energy and phonon group velocity but increase the density of states of phonons. The surface charges can change the size and temperature dependence of phonon thermal conductivity of GaN nanofilm. Based on these theoretical results, one can adjust the phonon properties and temperature/size dependent thermal conductivity in GaN nanofilm by changing the surface charges.  相似文献   

2.
On nanoscale, thermal conduction is affected by system size. The reasons are increased phonon scattering and changes in phonon group velocity. In this paper, the in-plane thermal resistivity of nanoscale silicon thin films is analyzed by molecular dynamics (MD) techniques. Modifications to the dispersion relation are calculated directly with MD methods at high temperature. The results indicate that the dispersion relation starts to change for very thin films, at around two nanometers. The reasons are band folding and phonon confinement. Thermal resistivity is analyzed by the direct non-equilibrium method, and the results are compared to kinetic theory with modified dispersion relations. Thermal resistivity is affected by both surface scattering and dispersion. Moreover, in thin films, the characteristic vibrational frequency decreases, which in standard anharmonic scattering models indicates a longer relaxation time and affects the resistivity. The results indicate that in very thin films, the resistivity becomes highly anisotropic due to differences in surface scattering. In two cases, surface scattering was found to be the most important mechanism for increasing thermal resistivity, while in one case, phonon confinement was found to increase resistivity more than surface scattering.  相似文献   

3.
运用基于赝势平面波基组的密度泛函程序VASP并结合Quantum ESPRESSO,Phonopy软件包对压力下VN的结构、力学性质、声子色散关系进行了第一性原理的研究.分别对NaCl型(B1),CsCl型(B2),WC型(Bh)三种构型的VN进行了计算,三种结构的体积能量曲线、焓压关系和声子谱表明在常压下六角WC结构与立方结构相比更稳定.随着压力增加VN由Bh结构到B1结构的相变点发生在30GPa左右,而B1结构到B2结构的相变点可能发生在150GPa左右.常压下三种结构的VN是力学稳定的,其弹性常数和弹性模量都有随压强的增大而增加的趋势,三者都是脆性材料.B1结构和B2结构坐标基矢方向上的杨氏模量数值与体对角线方向上的差距较大,体现出明显的各向异性.随压力的增加B1结构各向异性程度增大而B2结构各向异性程度减小  相似文献   

4.
Inelastic neutron scattering measurements were carried out to determine the phonon density of states of ZnSe and interpreted with lattice dynamical computations (ab initio as well as a potential model). Calculations are also reported for other II-VI compounds, ZnTe and ZnS. Vibrational (phonon spectra and Grüneisen parameters), and thermal (negative thermal expansion and non-Debye specific heat) properties have been calculated and found to be in good agreement with available experimental data. This model has been further employed to study the pressure-induced solid-solid phase transitions exhibited by these compounds and the results have been compared with experimental data. Total energy calculations for zincblende and SC16 phases of ZnSe were carried out employing the pseudopotential approach under the local density approximation (LDA) as well as the generalized gradient approximation (GGA). The density functional perturbation theory is applied to study the vibrational properties of the zincblende and SC16 phases of ZnSe. An investigation of the pressure dependence of the phonon frequencies shows that the existence of the (experimentally undetected) SC16 phase as a thermodynamically stable high pressure phase is impeded due to dynamical instabilities. A detailed investigation of the polarization of phonons of different energies for the various phases of these compounds indicates that in the case of the zincblende phase the low energy modes are librational, while in the rocksalt phase the low energy modes are bending modes. Further, in ZnTe the low energy bending modes display a larger amplitude of bending than that in ZnSe and ZnS.  相似文献   

5.
With the goal of minimizing the domain size for molecular dynamics (MD) simulations, we develop a new class of absorbing boundary conditions (ABCs) that mimic the phonon absorption properties of an unbounded exterior. The proposed MD-ABCs are extensions of perfectly matched discrete layers (PMDLs), originally developed as an absorbing boundary condition for continuous wave propagation problems. Called MD-PMDL, this extension carefully targets the absorption of phonons, the high frequency waves, whose propagation properties are completely different from continuous waves. This paper presents the derivation of MD-PMDL for general lattice systems, followed by explicit application to one-dimensional and two-dimensional square lattice systems. The accuracy of MD-PMDL for phonon absorption is proven by analyzing reflection coefficients, and demonstrated through numerical experiments. Unlike existing MD-ABCs, MD-PMDL is local in both space and time and thus more efficient. Based on their favorable properties, it is concluded that MD-PMDL could provide a more effective alternative to existing MD-ABCs.  相似文献   

6.
本研究采用非平衡分子动力学方法对用Rectangle Carpet(RC)和Sierpinski Carpet(SC)分形结构布局的同位素掺杂石墨烯的热导率进行系统研究。研究表明,RC和SC结构的热导率均随分形数(m)的增加先减小后略微升高,且SC结构的热导率要低于RC结构的热导率。同时,我们通过计算声子谱、声子群速度、声子参与比和声子态密度来分析原始石墨烯、m=3的RC结构(RC3)和m=3的SC结构(SC3)结构中的声子行为。在全声子频率区域内,原始石墨烯、RC3和SC3结构的平均声子群速度和平均声子参与比分别为3.47 km·s-1,0.98;2.77 km·s-1,0.62和2.34km·s-1,0.61。结果显示,与原始结构和RC结构相比,SC结构中有更多的声子模被局域化,导致更低的声子群速度和较强的声子散射,进而可以抑制声子的热输运。  相似文献   

7.
孔祥刚  袁志红  虞游  高涛  马生贵 《中国物理 B》2017,26(8):86301-086301
The electronic, elastic, vibrational, and thermodynamic properties of Sr_(10)(PO_4)_6F_2(Sr-FAP) and Ca_(10)(PO_4)_6F_2(CaFAP) are systematically investigated by the first-principles calculations. The calculated electronic band structure indicates that the Sr-FAP and Ca-FAP are insulator materials with the indirect band gap of 5.273 eV and 5.592 eV, respectively. The elastic constants are obtained by the "stress–strain" method, and elastic modulus are further evaluated and discussed. The vibrational properties, including the phonon dispersion curves, the phonon density of states, the Born effective charge, and associated longitudinal optical and transverse optical(LO–TO) splitting of optical modes, as well as the phonon frequencies at zone-center are obtained within the linear-response approach. Substitution of Ca by Sr causes phonon frequencies to shift to lower values as expected due to the mass effect. Additionally, some phonon-related thermodynamic properties, such as Helmholtz free energy F, internal energy E, entropy S, and specific heat C_V of Sr-FAP and Ca-FAP are predicted with the harmonic approximation. The present calculated results of two apatites are consistent with the reported experimental and theoretical results.  相似文献   

8.
Appreciable elastic strain may considerably change the physical properties of crystals. This effect underlies the elastic stress technology, which has been intensively developed in recent years. The influence of elastic strain on the density of phonon states and on the properties of discrete breathers in the gap of the phonon spectrum of a crystal with a NaCl structure and a considerable difference between the anion and cation masses is studied using the molecular dynamics method. A number of crystal straining modes are considered. It is shown that the shear components of the strain tensor may significantly change the density of phonon states but slightly influence the frequencies of discrete breathers. Compression (tensile) strains raise (lower) the frequency of discrete breathers with a respective polarization.  相似文献   

9.
A first-principles pseudopotential method is used to investigate the structural and elastic properties of ScAs and ScSb in their ambient B1(NaCl) and in high pressure B2 (CsCl) phases and phonon structures at zero and close to phase transition pressure. The calculated lattice constants, static bulk modulus, first order pressure derivative of the bulk modulus and the elastic constants are reported in B1 and B2 structures and compared with available experimental and other theoretical results. The phonon properties of these two compounds are compared among themselves which reveal that these compounds are predominantly metallic, due to degeneracy of optical frequencies at the zone centre. At high pressure, near the B1 to B2 transition, the LA mode at X-point softens leading to structural instability.  相似文献   

10.
A comprehensive first principles study of structural, elastic, electronic, and phonon properties of zirconium carbide (ZrC) is reported within the density functional theory scheme. The aim is to primarily focus on the vibrational properties of this transition metal carbide to understand the mechanism of phase transition. The ground state properties such as lattice constant, elastic constants, bulk modulus, shear modulus, electronic band structure, and phonon dispersion curves (PDC) of ZrC in rock-salt (RS) and high-pressure CsCl structures are determined. The pressure-dependent PDCs are also reported in NaCl phase. The phonon modes become softer and finally attain imaginary frequency with the increase of pressure. The lattice degree of freedom is used to explain the phase transition. Static calculations predict the RS to CsCl phase transition to occur at 308?GPa at 0?K. Dynamical calculations lower this pressure by about 40?GPa. The phonon density of states, electron–phonon interaction coefficient, and Eliashberg's function are also presented. The calculated electron–phonon coupling constant λ and superconducting transition temperature agree reasonably well with the available experimental data.  相似文献   

11.
The surface energy of ionic materials is empirically related to bulk properties (elastic constants, electronic dielectric constant and optical band gap) through an analysis of the cleavage force. This is evaluated at small and large separations of the two crystal halves from phonon dispersion curves and from van der Waals interactions, respectively, and these two limiting behaviours are connected by a scaling hypothesis introduced for metals by Kohn and Yaniv. The experimental data that are available for a few ionic crystals seem to satisfy the suggested relation, with an empirical universal parameter which has roughly the same value as determined for metals.  相似文献   

12.
The collective dynamics for the longitudinal as well as the transverse modes of the phonon eigenfrequencies are carried out for three Zr-based bulk metallic glasses (BMGs) in the present paper by employing pseudopotential theory. The theoretical phonon models proposed by Hubbard-Beeby (HB), Takeno-Goda (TG) and Bhatia-Singh (BS) are used to generate the phonon dispersion curves (PDC). The elastic and thermodynamic properties have also been investigated for the said BMGs by using the elastic limit of the phonon dispersion curves. The screening impact was also observed by using five different forms of local field functions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Faridet al. (F) and Sarkaret al. (S) for the aforesaid properties. The derived results are seen to be in qualitative agreement with the available experimental and theoretically calculated data, as they confirm the applicability of Shaw's constant core model potential and self-consistent phonon theory for such studies.  相似文献   

13.
E. Deligoz  H. Ozisik 《哲学杂志》2015,95(21):2294-2305
The first-principles calculations are employed to provide a fundamental understanding of the structural features and relative thermodynamical, mechanical and phonon stability of TiAsTe compound. The calculated lattice parameters are in good agreement with available experimental results. We have computed elastic constants, its derived moduli and ratios that characterize mechanical properties for the first time. The calculated elastic constants indicate that these materials are mechanically stable at ambient condition. The minimum thermal conductivities of TiAsTe are calculated using both Clarke’s model and Cahill’s model. Furthermore, the elastic anisotropy has been visualized in detail by plotting the directional dependence of compressibility, Young’s modulus and shear modulus. Our results suggest strong elastic anisotropy for this compound. Additionally, the phonon spectra and phonon density of states are also obtained and discussed. The full phonon dispersion calculations confirm the dynamic stability of TiAsTe.  相似文献   

14.
H.Y. Wu  Y.H. Chen  C.R. Deng  X.Y. Han  P.F. Yin 《哲学杂志》2015,95(21):2240-2256
The electronic, elastic and dynamical properties of MgSe in the rocksalt (B1) and iron silicide (B28) phase and the effects of pressure on these properties are investigated using first-principles method. The calculated electronic band structure indicates that the B1 phase of MgSe presents an indirect band-gap feature and the band gaps initially increase with pressure and subsequently decrease upon compression. Remarkably, an indirect-to-direct band-gap transition has been observed at the phase transition pressure. The elastic constants, bulk modulus, shear modulus, Young’s modulus, elastic anisotropy and B/G ratio of MgSe in the B1 and B28 phase at high pressure have also been investigated. The bulk modulus, shear modulus and Young’s modulus all increase monotonously with the increasing of pressure for the B1 and B28 phase of MgSe. The calculated phonon frequencies of the B1 phase at zero pressure agree well with available theoretical results. And the transverse acoustic phonon TA(X) mode of this phase completely softening to zero at 82 GPa. The phonon curves of the B28 phase under pressure have also been successfully investigated.  相似文献   

15.
Specific features of the transport of weakly nonequilibrium thermal phonons (λ ph = 10–50 nm) in nanoscale ceramics at a transition from micro-to nanosizes have been investigated. On the basis of the model of spherical shells randomly distributed in space and modeling grain boundaries, whose elastic properties differ from the elastic properties of grains, features of the phonon spectrum in the wavelength range λ phR g have been studied. The conditions leading to the occurrence of a gap in the phonon spectrum of nanoscale materials are analyzed. It is shown that the position of the top gap edge in the phonon spectrum is determined to a large extent by the structure of phase boundaries, while the presence of inclusions (pores, other phases) with characteristic sizes smaller than that of grains of the main ceramic material shifts the gap to high frequencies in the phonon spectrum. Temperature dependences of the diffusion coefficient of nonequilibrium phonons near the top gap edge in the phonon spectrum have been measured for multiphase ceramics based on YSZ + 14.3% Al2O3 composites.  相似文献   

16.
The electronic structure, elastic constants and lattice dynamics of the B(2) type intermetallic compound LaAg are studied by means of density functional theory calculations with the generalized gradient approximation for exchange and correlation. The calculated equilibrium properties and elastic constants agree well with available experimental data. From the ratio between the bulk and shear moduli, LaAg is found to be ductile, which is unusual for B(2) type intermetallics. The computed band structure shows a dominant contribution from La 5d states near the Fermi level. The phonon dispersion relations, calculated using density functional perturbation theory, are in good agreement with available inelastic neutron scattering data. Under pressure, the phonon dispersions develop imaginary frequencies, starting at around 2.3 GPa, in good accordance with the martensitic instability observed above 3.4 GPa. By structural optimization the high pressure phase is identified as orthorhombic B(19).  相似文献   

17.
范航  何冠松  杨志剑  聂福德  陈鹏万 《物理学报》2019,68(10):106201-106201
高聚物粘结炸药(PBX)的热力学性质是用于炸药结构响应、安全性评估、数值模拟分析等的重要参数.由于PBX结构的多尺度特性,完全采取实验方法精细表征这些参数存在巨大的挑战.本文运用第一性原理和分子动力学计算的方法,系统研究了三氨基三硝基苯(TATB)基高聚物粘结炸药的热力学参数和界面热传导性质.利用散射失配模型研究了TATB与聚偏二氟乙烯(PVDF)界面的热传导过程,发现热导率随温度升高而上升,并且在高温情况下接近于定值.基于分子动力学获得的TATB热导率并结合界面热导率,分析了PBX炸药的热导与颗粒尺寸的关系,当颗粒尺寸大于100 nm时,界面热阻对于PBX热导率的影响有限.  相似文献   

18.
The phonon vibrational frequencies, electronic and elastic properties of SrFCl, one of the members of the alkaline-earth fluorohalide family crystallizing with the PbFCl-type structure, have been investigated, for the first time, at the ab initio level, by using the periodic CRYSTAL program. Both Hartree-Fock (HF) and density functional theory (DFT) Hamiltonians have been used, with the latter in its local density, gradient-corrected (PW91), and hybrid (B3LYP) versions. The structural and elastic properties are in good agreement with experiment, with the exception of those calculated within the local density approximation, which were found to be systematically under-estimated (distances) or over-estimated (elastic properties). As regards the phonon frequencies, B3LYP and PW91 provide excellent results, the mean absolute difference with respect to the experimental Raman data being 4.1% and 3.6%, respectively.  相似文献   

19.
Structural, phonon, optical, elastic and electronic properties of Y3Al5O12 have been investigated by means of the first principles method with the Cambridge Serial Total Energy Package (CASTEP) code based on the density functional theory. The calculated lattice parameters, valence charge density, bond length and single crystal elastic properties at zero pressure are in good agreement with the available experimental data. The close agreement with the experimental values provides a good confirmation of the reliability of the calculations. Optical, elastic and phonon properties of Y3Al5O12 under pressures are performed. The results that are obtained show the changes of optical and elastic properties under the influence of applied pressure, and proving the dynamical stability of YAG are destructed when applied pressure up to 7 GPa. Moreover, polycrystalline elastic moduli are deduced according to the Reuss assumption. Those elastic constants provide important parameters that describe reliability of both physical model and engineering application at the atomistic level. The result of the density of states explains the nature of the electronic band structure.  相似文献   

20.
The Raman light scattering from optical phonons of Ge quantum dots grown by molecular beam epitaxy on a Si(111) surface is studied. A series of Raman lines related to the quantization of phonon spectrum is observed. It is shown that phonon frequencies are adequately described in terms of the elastic properties and the dispersion of the optical phonons of bulk Ge. The strain experienced by the Ge quantum dots is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号