首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe-Mo-Ni-Cu-石墨高温自润滑复合材料的摩擦学性能研究   总被引:3,自引:2,他引:1  
采用粉末冶金工艺,在Fe-Mo-石墨自润滑复合材料的基础上,制备了添加Ni、Cu两种元素的Fe-MoNi-Cu-石墨高温自润滑复合材料,并在栓-盘式高温摩擦试验机上考察了其在室温、320和450℃下的摩擦学性能;采用金相显微镜、XRD和SEM等表征方法,分析了材料金相组织、物相成分和摩擦表面形貌.结果表明:FeMo-石墨自润滑复合材料中添加Ni和Cu元素,可以强化基体,增强材料的力学性能,改善材料的摩擦学性能.在高温摩擦过程中,Fe-Mo-Ni-Cu-石墨高温自润滑复合材料摩擦表面生成的由石墨+Cu Fe5O8+Fe3O4+Fe2.6Ni0.4O4组成的复合润滑膜是导致其具有良好高温润滑性的主要原因.  相似文献   

2.
用放电等离子烧结(Spark Plasma Sintering,简称SPS)技术制备了Ni-Mo-Pb O高温自润滑复合材料,分析NiMo-Pb O复合材料的微观组织结构,研究了Ni-Mo-Pb O复合材料从室温至700℃的摩擦学性能.在烧结过程中,Pb O和Mo之间发生了氧化还原反应,SPS烧结制备的Ni-Mo-Pb O复合材料主要由Ni的固溶体、Pb和钼的氧化物组成.复合材料的摩擦和磨损性能与温度有关.Ni-Mo-Pb O复合材料的摩擦系数随着温度的增加先减小后增加.磨损率随着温度的增加先减小后稍有增加.少量的Pb O加入到镍基合金中显著改善了镍基复合材料的高温摩擦磨损性能.尤其在约500℃时,复合材料显现出非常低的摩擦系数(0.09)和磨损率[约2.8×10_(–6) mm_3/(N·m)],这归因于主要由Pb O、少量的Ni O及钼酸盐组成的致密的润滑膜的形成.  相似文献   

3.
锡青铜梯度自润滑复合材料的摩擦学性能   总被引:5,自引:6,他引:5  
利用粉末冶金工艺设计和制备了新型润滑材料——锡青铜梯度自润滑复合材料;在MM-200型摩擦磨损试验机上考察了其摩擦学性能,利用扫描电子显微镜观察分析了磨损表面形貌,进而探讨了其摩擦磨损机理.结果表明:锡青铜梯度自润滑复合材料摩擦学性能优异,且偶件损伤轻微;所研制的锡青铜梯度自润滑复合材料的摩擦学性能优于目前国内常用的金属润滑材料555铅青铜、6501锡青铜以及进口多层金属润滑材料;锡青铜梯度自润滑复合材料的优异减摩抗磨性能取决于其特殊的梯度结构.  相似文献   

4.
用市售微米MoS2(micro-MoS2)、自制MoS2纳米球(MoS2 nano-balls)与MoS2夹层化合物(MoS2-IC)分别共混填充到聚甲醛(POM)中,然后把此共混物复合到铜粉钢板上,制备出系列改性POM/铜/钢3层复合轴承材料.在UST万能表面测试仪上对复合材料的微观摩擦学性能进行了测试.结果显示POM/MoS2-IC复合材料的微观摩擦学性能并不理想,分析原因认为在MoS2夹层过程中,MoS2的晶型由摩擦学性能优良的2H型转变成了相对较差的1T型.POM/MoS2 nano-balls复合材料表现出了优良的微观摩擦学性能,这归咎于其独特的球形封闭结构引起的化学稳定性升高,此外在摩擦过程中球形结构可以通过剥层与转移起到润滑作用.  相似文献   

5.
本文介绍了Ta-Nb-MoS_2体系自润滑复合材料的研究结果,并重点考察了该系材料中金属组元Ta、Nb及其含量比对材料机械性能和摩擦性能的影响。研究结果表明,在该系材料中金属组无重量比不变的条件下,复合材料的机械强度随金属组元中Nb含量的增加而得到显著改善,但对材料的摩擦性能影响不大。  相似文献   

6.
Ni3Al基自润滑复合材料摩擦学性能的研究   总被引:1,自引:1,他引:0  
采用真空热压烧结方法制备了Ni3Al基自润滑复合材料,通过HT-1000型球盘式高温摩擦仪分别测试了不同条件下Ni3Al基自润滑复合材料的摩擦磨损性能.结果表明:复合材料在20~1 000℃均具有良好的自润滑性能,其摩擦系数在0.24~0.43之间.研究发现复合材料在低载(5 N、滑动速度为0.2 m/s)低温(20~400℃)下具有最低的摩擦系数(0.24~0.29),但在低载高温下(600℃以上)摩擦系数较高(0.39~0.41);而在高载(20 N)时在整个温度测试区间(20~1 000℃)拥有低而稳定的摩擦系数(0.28~0.31).Ni3Al基自润滑材料优异的高温摩擦学性能归因于高温下材料摩擦表面形成的银、氟化物、氧化物以及钼酸盐等低剪切化合物的协同润滑作用.  相似文献   

7.
MOSi2及其复合材料摩擦学性能研究   总被引:12,自引:3,他引:12  
通过热压烧结制备了MoSi2及3种MoSi2基复合材料,考察了其相组成和结构,测定了其硬度和断裂韧性,评价了其摩擦磨损行为,并探讨了力学性能、摩擦界面特性和偶件材料特性等对MoSi2及其复合材料摩擦学行为的影响.结果表明:MoSi2同GCrl5钢和WC-Co硬质合金配副时表现出较高的摩擦系数,其磨损强烈依赖于偶件材料特性;第二相的引入对MoSi2的磨损行为具有显著影响,其中SiC第二相可以改善MoSi2的摩擦磨损性能;摩擦界面特性和偶件材料特性则对MoSi2及其复合材料的摩擦磨损性能具有决定性影响.  相似文献   

8.
本文主要介绍了MoS_2-Ta-Mo体系复合材料的研制结果。着重考察了热压温度和组分对该体系材料的摩擦学性能和机械强度的影响。讨论了Mo的加入对材料中残存MoS_2量的影响,以及Mo的加入和热压温度对制得材料晶粒大小的影响。  相似文献   

9.
Cu-2Ni-5Sn-(石墨+PbO)自润滑复合材料高温摩擦学性能的研究   总被引:1,自引:0,他引:1  
采用粉末冶金工艺制备了Cu-2Ni-5Sn-(石墨+PbO)系自润滑复合材料,并采用XRD、SEM、万能材料试验机和高温摩擦磨损试验机等研究了微观组织、力学性能和室温至500℃下的摩擦学性能.结果表明:石墨+PbO复合固体润滑剂质量分数为8%时,该复合材料综合摩擦磨损性能最优.Ni的加入能提高基体的力学性能.随着温度的增加,该复合材料的摩擦系数几乎保持稳定,磨损率先缓慢增加,后急剧增加.室温时磨损表面形成以石墨为主成分的润滑膜起主要润滑作用,磨损机理主要为轻微塑性变形和局部剥落.300℃时,由PbO(Fe_2O_3)6、石墨和Cu_2O组成的致密润滑膜是Cu-2Ni-5Sn-(石墨+PbO)自润滑复合材料具有良好润滑性的主要原因,磨损机理主要包括复合材料塑性变形、局部剥落和轻微的黏着磨损.500℃时,主要由PbO(Fe_2O_3)6、石墨、Cu_2O和Cu O组成的复合润滑膜起到了润滑作用,磨损机理主要为石墨周边区域基体脱落及塑性变形引起的剥落和氧化磨损.  相似文献   

10.
Y—TZP/MoS2自润滑材料的摩擦学性能研究   总被引:1,自引:0,他引:1  
利用醇-水溶液加热方法制备了具有特殊显微结构、优良力学性能的Y-TZP/MoS2复合材料,考察了室温下复合材料与GCr15钢球及ZrO2陶瓷球配副时的摩擦学性能.结果表明当复合材料与GCr15钢配副时,GCr15钢在复合材料表面形成转移膜并发生粘着磨损,相应的摩擦系数较高;当复合材料与ZrO2配副时,随着复合材料中MoS2润滑相含量的增加,摩擦系数和复合材料磨损率逐渐减小,当复合材料中MoS2的体积分数为50.0%,其摩擦系数小于0.25,磨损率小于1.02×10-6 mm2/m*N.  相似文献   

11.
镍基自润滑复合粉末(NiCrMoAl-Ag-BaF_2/CaF_2)采用高能球磨结合喷雾造粒法制备,镍基自润滑涂层利用等离子喷涂技术制备.涂层摩擦磨损性能利用HT-1000型销-盘摩擦试验机在不同摩擦速度(0.2~1.0 m/s)及不同试验温度(25~800℃)条件下测试.涂层微观组织、物相组成及摩擦磨损机理利用SEM、EDS和Raman等表征分析.结果表明:在25℃到800℃,涂层的摩擦系数随着温度的增加呈先增加后降低的趋势,400℃时摩擦系数达到最高值0.37;800℃时摩擦系数降至最低值0.17.涂层摩擦系数随摩擦速度的增加呈现先降后增的趋势,0.8 m/s时摩擦系数最低,约在0.17~0.29范围内;1.0 m/s时摩擦系数升高至0.20~0.27范围内.涂层优异的自润滑性能得益于软金属Ag的低剪切性,以及600~800℃范围内BaF_2/CaF_2、Ag与钼酸盐、铬酸盐等高温产物的协同润滑效应.  相似文献   

12.
本文介绍了W—MoS_2体系自润滑复合材料的制备方法。考察了制备工艺参数(组分及热压温度)对材料性能的影响,以及负荷、速度和温度等因素对材料的摩擦、磨损性能的影响。结果表明,通过制备工艺参数的改变,就可以研制出适合于不同实际使用要求的自润滑复合材料。  相似文献   

13.
采用粉末冶金工艺制备了锡青铜网增强的锡青铜基自润滑复合材料,考察了锡青铜网对复合材料机械性能和摩擦学性能的影响.研究表明:锡青铜网对研制材料的增强作用主要是由于锡青铜网与基体界面相容性良好,热膨胀系数相近,界面结合强度高,从而减少了增强体与基体之间的裂纹或空隙,且网状金属丝间的筋结与支撑提高了材料的断裂能所致;加入一定量的金属网片提高了材料的耐磨性,但金属网片含量过高会导致转移膜的破坏,从而增大摩擦系数,降低复合材料的强度和耐磨性能.  相似文献   

14.
采用粉末冶金工艺制备了铁基含油自润滑复合材料,考察了Cu与石墨的含量对铁基含油自润滑复合材料的机模样性能、摩擦学性能及组织结构的影响,并利用X射线衍射仪、扫描电子显微镜及光学显微镜等对材料的组分、显微组织形态和结构以及磨损表面形貌等进行了系统的观察和分析,结果表明:添加适量Cu的Fe-Cu二元系材料的机械性能和摩擦学性能明显优于Fe系材料,这主要是因为Cu的加入改变了材料的微观结构。添加适量石墨的Fe-Cu-石墨三元系材料比Fe-Cu二元系材料具有更优异的摩擦学性能,但机械性能有所下降,这主要是由于石墨与油的协同润滑效应和石墨的加入改变了材料的微观结构所致。  相似文献   

15.
采用粉末冶金方法制备出了Cu-12.5Ni-5Sn-石墨自润滑复合材料,通过改变石墨的含量来研究该复合材料的力学性能和在不同摩擦试验温度下的摩擦磨损性能,采用SEM和Raman分析磨损表面,进而讨论复合材料的摩擦、磨损和润滑机制. 结果表明:复合材料的硬度和屈服强度随着石墨含量的增加而逐渐降低;温度对不同石墨含量的复合材料的摩擦磨损性能有显著的影响,在室温下,石墨质量分数为1%和3%的石墨复合材料的摩擦系数和磨损率明显小于5%石墨复合材料;在300 ℃下,石墨质量分数为3%时,复合材料的摩擦磨损性能最好;在500 ℃下,石墨质量分数为5%的石墨复合材料的摩擦磨损性能最好. 在室温下,复合材料具有较好自润滑性的主要原因是形成了几乎光滑连续的石墨润滑膜. 在300和500 ℃下,由金属氧化物和石墨组成的混合物润滑膜是复合材料保持自润滑性的主要原因.   相似文献   

16.
碳纤维铜基复合材料的摩擦学性能研究   总被引:8,自引:3,他引:8  
本文对碳纤维铜基复合材料与钢组成的摩擦副进行了摩擦学性能研究,在不同的滑动速度和不同的载荷条件下,得出了摩擦系数和比磨损率的试验结果,并且对碳膜的形成和破裂,摩擦系数的变化过程,以及出现的磨损状态等进行了分析和讨论。  相似文献   

17.
聚四氟乙烯/聚苯硫醚织物自润滑关节轴承的摩擦学性能   总被引:1,自引:0,他引:1  
制备了两种聚四氟乙烯(PTFE)/聚苯硫醚(PPS)织物衬垫自润滑关节轴承.在径向载荷为35 kN,摆动频率为2.5 Hz工况下,利用关节轴承试验机对其摩擦学性能进行了研究.采用扫描电子显微镜(SEM)、能谱仪(EDS)和激光扫描共聚焦显微镜(LSCM)对其摩擦面的微观形貌和磨损机理进行了研究.结果表明:PTFE/PPS短纤维关节轴承表现出良好的摩擦学性能,其耐磨性和PTFE转移膜面积比PTFE/PPS长丝纤维关节轴承高22.9%和69.7%.PTFE/PPS短纤维关节轴承的磨损机理主要为轻微的黏着磨损和磨粒磨损,PTFE/PPS长丝纤维关节轴承的磨损机理主要为严重的黏着磨损和磨粒磨损.  相似文献   

18.
Fe—Mo-CaF2高温自润滑材料的摩擦学特性研究   总被引:6,自引:5,他引:6  
采用中频感应热压工艺制备了具有良好高温摩擦学特性的Fe—Mo—CaF2高温自润滑材料,并用扫描电子显微镜和X射线衍射仪分析了Fe—Mo合金和Fe—Mo—CaF2高温自润滑材料的摩擦磨损机理.结果表明,由于高温下的机械摩擦化学效应,Fe—Mo合金磨损表面形成了由MoO2及Fe2O3组成的黑色釉质膜,从而表现出良好的减摩抗磨性能.在500℃以上时,Fe—Mo—CaF2合金磨损表面形成了由CaF2、MoO2、CaMoO4、Fe2O3及FeMo4F6等组成的复合润滑膜,从而表现出良好的高温自润滑性能.  相似文献   

19.
摩擦片的摩擦磨损性能严重影响盘式制动器的使用寿命和客车行驶的安全性.以灰铸铁HT250圆盘为对偶件,利用销盘式摩擦磨损试验机,在不同温度下对树脂基复合材料摩擦片的摩擦系数和磨损率进行研究,同时应用JSM-651010LA型扫描电子显微镜、HGP-7500型光电直读光谱仪和HXD-1000TMSC型显微硬度测试仪对摩擦磨损表面进行观察和测量,表征其摩擦表面的微观形貌和测定微观硬度,进而推断其磨损机理.结果表明:在不同温度下,平均摩擦系数和磨损率均随着温度的升高先增加后降低;随着温度升高,摩擦层的面积和其微观硬度的变化和平均摩擦系数、磨损率的变化规律基本相同;在高温摩擦磨损过程中,黏着磨损占主导作用,同时伴随着切削磨损.  相似文献   

20.
采用热压烧结的方法制备了添加WS2质量百分数为10%、20%和30%的Fe-28Al-5Cr基复合材料,通过XRD和SEM等手段分析了样品的相组成和组织结构.利用自制的真空摩擦试验机测试了样品在4×10-4Pa真空下的摩擦学性能.研究结果显示:通过与WS2的复合能够显著降低Fe3Al基金属间化合物在真空条件下的摩擦系数,但三种不同WS2含量复合材料的摩擦系数差别不大.随着WS2含量增加,复合材料的磨损率逐渐降低,特别是30%复合材料的磨损率较纯Fe-28Al-5Cr的磨损率低约1个数量级.滑动速度和载荷对三种材料的摩擦系数和磨损率均有一定的影响.纯Fe3Al的磨损表面较为粗糙,出现严重的剥落坑和剥落痕迹,磨损机理为严重的疲劳磨损.添加质量百分数为10%WS2的复合材料的磨损机理为磨粒磨损和疲劳磨损;添加WS2质量百分数为20%和30%的复合材料,其磨损表面相对较为光滑平整,磨损机理为轻微剥落.因此,在复合材料制备中添加WS2能够显著提高Fe3Al金属间化合物的真空摩擦学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号