首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The origin of regioselectivity in rhodium diphosphine catalyzed hydroformilation was investigated by means of hybrid QM/MM calculations using the IMOMM method. The roles of the diphosphine bite angle and of the nonbonding interactions were analyzed in detail by considering rhodium systems containing xantphos-type ligands, for which a correlation between the natural bite angle and regioselectivity has been recently reported. From the pentacoordinated equatorial--equatorial HRh(CO)(alkene)(diphosphine) key intermediate, eight possible reaction paths were defined and characterized through their respective transition states (TS). We succeeded in reproducing the experimentally observed trends for the studied diphosphines. By performing additional calculations on model systems, in which the steric effects induced by the phenyl substituents of xantphos ligands were canceled, we were able to separate, identify, and evaluate the different contributions to regioselectivity. These additional calculations showed that regioselectivity is governed by the nonbonding interactions between the diphenylphosphino substituents and the substrate, whereas the effects directly associated to the bite angle, what we call orbital effects, seem to have a smaller influence.  相似文献   

2.
Recent advances in rhodium catalyzed hydroformylation using xanthene‐based ligands will be reviewed. The calculated natural bite angles of the ligands discussed are in the range 100–123°. While the general trend is clear—higher 1: b ratios at wider angles, small changes in the bite angle do not exhibit a regular effect on the selectivity of the reaction. The same is true for the rate of CO dissociation; the larger the rate of the CO dissociation, the larger the rate of hydroformylation, but for small changes the effects do not comply with this rule.  相似文献   

3.
Unprecedented high activities and selectivities were observed in the hydroformylation of internal octenes to linear products using rhodium catalysts with rigid diphosphane ligands. Dibenzophosphole 1 and a phenoxaphosphane analogue with bite angles of 120 and 119°, respectively, are suited for this.  相似文献   

4.
Migratory insertions of olefins into metal–oxygen bonds are elementary steps of important catalytic processes, but well characterised complexes that undergo this reaction are rare, and little information on the effects of ancillary ligands on such reactions has been gained. We report a series of alkoxo alkene complexes of rhodium(i) that contain a range of bidentate ligands and that undergo insertion of the alkene. Our results show that complexes containing less electron-donating ancillary ligands react faster than their counterparts containing more electron-donating ancillary ligands, and that complexes possessing ligands with larger bite angles react faster than those with smaller bite angles. External added ligands had several effects on the reactions, including an inhibition of olefin isomerisation in the product and acceleration of the displacement of the product from complexes of ancillary ligands with small bite angles. Complementary computational studies help elucidate the details of these insertion processes.

A series of diphosphine-ligated rhodium(i) alkoxo alkene complexes is reported and the migratory insertion of the alkene moiety into the rhodium–oxygen bond in these complexes was studied, revealing the effects of the ligand on the insertion process.  相似文献   

5.
By a sol-gel process a rhodium complex containing a diphosphane with a large natural P-Rh-P bite angle is covalently anchored in a silica matrix (see picture). The immobilized catalyst is a very selective hydroformylation catalyst that is completely and conveniently separated from the product and can be reused in numerous cycles.  相似文献   

6.
Among the bisphosphine ligands, we have previously developed Cn-TunePhos (n = 1-6) as a family of ligands with tunable bite angles. The increase in spacer -CH2- groups in this family of ligands causes changes in ligand dihedral angle, which in turn causes P-Pd-P bite angle variation. Pd-catalyzed asymmetric alkylations and cycloadditions have been tested with Cn-TunePhos ligands. This study aims at a possible correlation between ligand bite angles with enantioselectivity of the Pd-catalyzed asymmetric products.  相似文献   

7.
We report a catalyst for intermolecular hydroamination of vinylarenes that is substantially more active for this process than catalysts published previously. With this more reactive catalyst, we demonstrate that additions of amines to vinylarenes and dienes occur in the presence of potentially reactive functional groups, such as ketones with enolizable hydrogens, free alcohols, free carboxylic acids, free amides, nitriles, and esters. The catalyst for these reactions is generated from [Pd(eta(3)-allyl)Cl](2) (with or without added AgOTf) or [Pd(CH(3)CN)(4)](BF(4))(2) and Xantphos (9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene), which generates complexes with large P-Pd-P bite angles. Studies on the rate of the C-N bond-forming step that occurs by attack of amine on an eta(3)-phenethyl and an eta(3)-allyl complex were conducted to determine the effect of the bite angle on the rate of this nucleophilic attack. Studies on model eta(3)-benzyl complexes containing various bisphosphines showed that the nucleophilic attack was faster for complexes containing larger P-Pd-P bite angles. Studies of substituted unsymmetrical and unsubstituted symmetrical model eta(3)-allyl complexes showed that nucleophilic attack on complexes ligated by Xantphos was faster than on complexes bearing ligands with smaller bite angles and that nucleophilic attack on unsymmetrical allyl complexes with larger bite angle ligands was faster than on unsymmetrical allyl complexes with smaller bite angle ligands. However, monitoring of catalytic reactions of dienes by (31)P NMR spectroscopy showed that the concentration of active catalyst was the major factor that controlled rates for reactions of symmetrical dienes catalyzed by complexes of phosphines with smaller bite angles. The identity of the counterion also affected the rate of attack: reactions of allylpalladium complexes with chloride counterion occurred faster than reactions of allylpalladium complexes with triflate or tetrafluoroborate counterion. As is often observed, the dynamics of the allyl and benzyl complexes also depended on the identity of the counterion.  相似文献   

8.
Phosphorus dendrimers containing terminal phosphoramidite ligands have been found to be highly effective and recoverable catalysts for the rhodium(i) catalyzed [2+2+2] cycloaddition reactions. A strong positive dendritic effect is observed both in the activity and enantiodiscrimination leading to axially chiral biaryl compounds.  相似文献   

9.
Stable 1,2-disulfanylalkene palladium complexes [(RS-CH=CR′-SR)PdCl2] were synthesized in 85–94% yield by reaction of palladium(II) chloride with sulfur-containing ligands RS-CH=C(R′)-SR (analogs of dithiolate ligands). The structure of the complexes was studied by NMR spectroscopy and quantum-chemical methods. The binding energy in palladium complexes with bis(arylsulfanyl)- and bis(alkylsulfanyl)alkenes was estimated (DFT) at 50 and 56 kcal/mol, respectively. Variation of substituents on the sulfur atoms is a convenient tool for fine tuning of the ligand properties and controlling the strength of the complex. The bite angle of the ligands does not depend on the substituent nature and is 88–89°, which is typical of square-planar complexes. According to the bite angle, the examined ligands are analogs of well known bidentate phosphine ligands, but the former are more labile since the corresponding binding energy is lower by 36 kcal/mol.  相似文献   

10.
Diphosphine ligands are commonly used for the catalytic hydrosilylation of ketones using Cu(I) complexes. The electronic effect of the P-Cu-P bite angle has been investigated by a theoretical DFT study. An increase of the P-Cu-P bite angle induces a stronger phosphorus lone pair/Cu-H σ∗ orbital interaction due to a better overlap between these orbitals. This increase in overlap affects structural and electronic properties of the copper hydride catalyst. Increasing the bite angle leads to a decrease of the Cu-P distances and an increases of the Cu-H distances. From an electronic point of view, the effect of an increasing bite angle leads to a weakening of the σ Cu-H orbital, and an increase of the hydride population. The increased polarization of the hydride leads to an easier electron transfer from the σ Cu-H bond to the carbon of the ketone.  相似文献   

11.
The synthesis of bo rylated orga nofluorines is of great interest due to their potential values as synthons in modular construction of fluorine-containing molecules.Reported herein is a rhodium-catalyzed hydrobo ration of arylgem-difluoroalkenes leading to a series of α-difluoromethylated benzylborons.The use of cationic rhodium catalyst and a biphosphine ligand with large bite angle was crucial for reactivity by offering good regioselectivity and diminishing the undesired β-F elimination.Preliminary derivatizations of the products were conducted to showcase the utility of this protocol.  相似文献   

12.
A rhodium complex [ClRh(CO)(L1)] featuring a wide bite angle diphosphine ligand (L1 = 1,3-bis(2-diphenylphosphinomethylphenyl)benzene) has been synthesized and structurally characterized. L1 supports a bite angle (P-M-P angle, β) of 171.4° in the trans-square planar complex. L1 was tested in Rh-catalyzed 1,4-addition reactions of arylboronic acids (six examples) to α,β-unsaturated ketones (five examples). In mixed aqueous/cyclohexane solution at 60 °C, addition reactions proceed in up to quantitative yield with a 1:1 arylboronic acid/enone ratio. Yields as high as 77% can be acquired even when one of the coupling partners is sterically encumbered 2,4,6-trimethylphenylboronic acid.  相似文献   

13.
A highly enantioselective rhodium-catalysed conjugate addition of phenylboronic acid to cyclic enones has been achieved using a dynamic library of chiral phosphorus ligands; the tropos/atropos nature of the ligands in the rhodium complex has been characterised via 31P-NMR.  相似文献   

14.
The reductive eliminations of ArCF(3) from Pd(II) complexes bearing small- and large-bite-angle phosphane ligands have been investigated using computational methods. QM/QM' and QM/MM studies were applied and complemented with CP2K molecular dynamics investigations. The ligand substituents were varied and a decomposition analysis was performed to allow us to gain insights into the steric and electronic properties of the ligands. The greater reactivity of Xantphos-derived (Xantphos=4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) complexes in the reductive elimination of ArCF(3) is primarily due to the lower repulsive effect of the phoshine substituents in the transition state than in the reactant complex, combined with the increased electronic interaction in the transition state. For DPPE (1,2-bis(diphenylphosphino)ethane), the steric effect of the ligand substituents is greater in the transition state, leading to a higher reaction barrier overall for reductive elimination. There is no direct correlation of the reactivity with the bite angle of the reactant complexes. Only for complexes with large ligand substituents may the bite angle of the Pd complexes be used as a guide for reactivity.  相似文献   

15.
Asymmetric hydrogenation of unsaturated morpholines has been developed by using a bisphosphine-rhodium catalyst bearing a large bite angle. With this approach, a variety of 2-substituted chiral morpholines could be obtained in quantitative yields and with excellent enantioselectivities (up to 99% ee). The hydrogenated products could be transformed into key intermediates for bioactive compounds.

2-Substituted chiral morpholines were synthesized via a newly developed asymmetric hydrogenation of dehydromorpholines catalyzed by a bisphosphine–rhodium complex bearing a large bite angle.  相似文献   

16.
Mononuclear rhodium complexes with reactive olefin ligands, supported on MgO powder, were synthesized by chemisorption of Rh(C(2)H(4))(2)(C(5)H(7)O(2)) and characterized by infrared (IR), (13)C MAS NMR, and extended X-ray absorption fine structure (EXAFS) spectroscopies. IR spectra show that the precursor adsorbed on MgO with dissociation of acetylacetonate ligand from rhodium, with the ethylene ligands remaining bound to the rhodium, as confirmed by the NMR spectra. EXAFS spectra give no evidence of Rh-Rh contributions, indicating that site-isolated mononuclear rhodium species formed on the support. The EXAFS data also show that the mononuclear complex was bonded to the support by two Rh-O bonds, at a distance of 2.18 A, which is typical of group 8 metals bonded to oxide supports. This is the first simple and nearly uniform supported mononuclear rhodium-olefin complex, and it appears to be a close analogue of molecular catalysts for olefin hydrogenation in solution. Correspondingly, the ethylene ligands bonded to rhodium in the supported complex were observed to react with H(2) to form ethane, and the supported complex was catalytically active for the ethylene hydrogenation at 298 K. The ethylene ligands also underwent facile exchange with C(2)D(4), and exposure of the sample to carbon monoxide led to the formation of rhodium gem dicarbonyls.  相似文献   

17.
New isocyanide ligands with meta‐terphenyl backbones were synthesized. 2,6‐Bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exhibited the highest rate acceleration in rhodium‐catalyzed hydrosilylation among other isocyanide and phosphine ligands tested in this study. 1H NMR spectroscopic studies on the coordination behavior of the new ligands to [Rh(cod)2]BF4 indicated that 2,6‐bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exclusively forms the biscoordinated rhodium–isocyanide complex, whereas less sterically demanding isocyanide ligands predominantly form tetracoordinated rhodium–isocyanide complexes. FTIR and 13C NMR spectroscopic studies on the hydrosilylation reaction mixture with the rhodium–isocyanide catalyst showed that the major catalytic species responsible for the hydrosilylation activity is the Rh complex coordinated with the isocyanide ligand. DFT calculations of model compounds revealed the higher affinity of isocyanides for rhodium relative to phosphines. The combined effect of high ligand affinity for the rhodium atom and the bulkiness of the ligand, which facilitates the formation of a catalytically active, monoisocyanide–rhodium species, is proposed to account for the catalytic efficiency of the rhodium–bulky isocyanide system in hydrosilylation.  相似文献   

18.
This paper describes the synthesis and characterization of a series of rhodium(I) and rhodium(III) complexes containing tellurium-rhodium bonds resulting from the coordination of diorgano telluride or organotelluro ligands. Oxidative addition, metathesis and substitution reactions of these compounds have been examined, and the resulting products are compared with those from the known reactions of rhodium(I) and rhodium(III) compounds containing phosphine ligands.  相似文献   

19.
The bite angle (ligand-metal-ligand angle) is known to greatly influence the activity of catalytically active transition-metal complexes towards bond activation. Here, we have computationally explored how and why the bite angle has such effects in a wide range of prototypical C-X bonds and palladium complexes, using relativistic density functional theory at ZORA-BLYP/TZ2P. Our model reactions cover the substrates H(3)C-X (with X = H, CH(3), Cl) and, among others, the model catalysts, Pd[PH(2)(CH(2))(n)PH(2)] (with n = 2-6) and Pd[PR(2)(CH(2))(n)PR(2)] (n = 2-4 and R = Me, Ph, t-Bu, Cl), Pd(PH(3))X(-) (X = Cl, Br, I), as well as palladium complexes of chelating and non-chelating N-heterocyclic carbenes. The purpose is to elaborate on an earlier finding that bite-angle effects have a predominantly (although not exclusively) steric nature: a smaller bite angle makes more room for coordinating a substrate by bending away the ligands. Indeed, the present results further consolidate this steric picture by revealing its occurrence in this broader range of model reactions and by identifying and quantifying the exact working mechanism through activation strain analyses.  相似文献   

20.
Intramolecular rhodium(II)-catalysed aromatic addition (Buchner) reactions of a range of α- and β-substituted α-diazoketones are reported. Both steric and electronic effects are evident for the aromatic additions investigated. In general, highly efficient aromatic addition is achieved through use of rhodium carboxylates bearing electronegative ligands, such as rhodium trifluoroacetate, while aromatic addition employing rhodium catalysts with more electron-donating ligands, such as rhodium caprolactam, is less efficient. Excellent levels of diastereoselectivity are possible for this process in the presence of rhodium acetate and rhodium caprolactam, however, a reduction in diastereocontrol is generally associated with use of the more reactive, electronegative catalysts. Interestingly, these catalyst effects can be overcome through the steric effects of the substituents on the α-diazoketone substrates, with the presence of sterically bulky substituents at the 2- or 3-position rendering the aromatic addition essentially catalyst independent in terms of efficiency and diastereocontrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号