首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Khaled A. Al-Sharo 《代数通讯》2013,41(10):3690-3703
Let G be a finite group and H ≤ G. The subgroup H is called: S-permutable in G if HP = PH for all Sylow subgroups P of G; S-permutably embedded in G if each Sylow subgroup of H is also a Sylow subgroup of some S-permutable subgroup of G.

Let H be a subgroup of a group G. Then we say that H is SQ-supplemented in G if G has a subgroup T and an S-permutably embedded subgroup C ≤ H such that HT = G and TH ≤ C.

We study the structure of G under the assumption that some subgroups of G are SQ-supplemented in G. Some known results are generalized.  相似文献   

2.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

3.
Wei Zhou  Zeyong Duan 《代数通讯》2013,41(12):4453-4457
Let H be a subgroup of a group G. We say that H satisfies the power condition with respect to G, or H is a power subgroup of G, if there exists a non-negative integer m such that H = G m  = 〈 g m |g ? G 〉. In this note, the following theorem is proved: Let G be a group and k the number of nonpower subgroups of G. Then (1) k = 0 if and only if G is a cyclic group (theorem of F. Szász); (2) 0 < k < ∞ if and only if G is a finite noncyclic group; (3) k = ∞ if and only if G is a infinte noncyclic group. Thus we get a new criterion for the finite noncyclic groups.  相似文献   

4.
We say that a subgroup H of a finite group G is nearly S-permutable in G if for every prime p such that (p, |H|) = 1 and for every subgroup K of G containing H the normalizer N K (H) contains some Sylow p-subgroup of K. We study the structure of G under the assumption that some subgroups of G are nearly S-permutable in G.  相似文献   

5.
Jinbao Li  Yanxiong Yan 《代数通讯》2013,41(12):4372-4388
Let H be a subgroup of a finite group G. H is said to be λ-supplemented in G if G has a subgroup T such that G = HT and HT ≤ H SE , where H SE denotes the subgroup of H generated by all those subgroups of H, which are S-quasinormally embedded in G. In this article, some results about the λ-supplemented subgroups are obtained, by which we determine the structure of some classes of finite groups. In particular, some new characterizations of p-supersolubility of finite groups are given under the assumption that some primary subgroups are λ-supplemented. As applications, a number of previous known results are generalized.  相似文献   

6.
Mark L. Lewis 《代数通讯》2013,41(4):1273-1292
A finite group G is odd-square-free if no irreducible complex character of G has degree divisible by the square of an odd prime. We determine all odd-square-free groups G satisfying S ≤ G ≤ Aut(S) for a finite simple group S. More generally, we show that if G is any nonsolvable odd-square-free group, then G has at most two nonabelian chief factors and these must be simple odd-square-free groups. If the alternating group A 7 is involved in G, the structure of G can be further restricted.  相似文献   

7.
M. Asaad 《代数通讯》2013,41(3):1034-1040
Let G be a finite group. A subgroup H of a group G is said to be c-supplemented in G if there exists a subgroup K of G such that G = HK and H ∩ K ≤ H G , where H G  = Core G (H) is the largest normal subgroup of G contained in H. In this article, we investigate the structure of a finite group G under the assumption that subgroups of prime order are c-supplemented in G. Moreover, we analyze the structure of a group G when the minimal subgroups of the generalized Fitting subgroup F?(G) of G are c-supplemented in G through the theory of formations.  相似文献   

8.
Semra Pamuk 《代数通讯》2013,41(7):3220-3243
Let G be a finite group and ? be a family of subgroups of G closed under conjugation and taking subgroups. We consider the question whether there exists a periodic relative ?-projective resolution for ? when ? is the family of all subgroups H ≤ G with rk H ≤ rkG ? 1. We answer this question negatively by calculating the relative group cohomology ?H*(G, 𝔽2) where G = ?/2 × ?/2 and ? is the family of cyclic subgroups of G. To do this calculation we first observe that the relative group cohomology ?H*(G, M) can be calculated using the ext-groups over the orbit category of G restricted to the family ?. In second part of the paper, we discuss the construction of a spectral sequence that converges to the cohomology of a group G and whose horizontal line at E 2 page is isomorphic to the relative group cohomology of G.  相似文献   

9.
Lars Pforte 《代数通讯》2013,41(2):659-673
In this paper we present a necessary condition for a p-group V ≤ G to be a vertex of some indecomposable direct summand of the permutation module k H  ↑ G , where H ≤ G, and G is a finite group. We call this condition H-suitability and present a method how to check for it. In an example, we determine all H-suitable groups. In fact, in this example every H-suitable group is the vertex of some indecomposable direct summand of k H  ↑ G .  相似文献   

10.
ABSTRACT

Let G be a connected, linear algebraic group defined over ?, acting regularly on a finite dimensional vector space V over ? with ?-structure V ?. Assume that V possesses a Zariski-dense orbit, so that (G, ?, V) becomes a prehomogeneous vector space over ?. We consider the left regular representation π of the group of ?-rational points G ? on the Banach space C0(V ?) of continuous functions on V ? vanishing at infinity, and study the convolution operators π(f), where f is a rapidly decreasing function on the identity component of G ?. Denote the complement of the dense orbit by S, and put S ? = S ∩ V ?. It turns out that, on V ? ? S ?, π(f) is a smooth operator. If S ? = {0}, the restriction of the Schwartz kernel of π(f) to the diagonal defines a homogeneous distribution on V ? ? {0}. Its nonunique extension to V ? can then be regarded as a trace of π(f). If G is reductive, and S and S ? are irreducible hypersurfaces, π(f) corresponds, on each connected component of V ? ? S ?, to a totally characteristic pseudodifferential operator. In this case, the restriction of the Schwartz kernel of π(f) to the diagonal defines a distribution on V ? ? S ? given by some power |p(m)| s of a relative invariant p(m) of (G, ?, V) and, as a consequence of the Fundamental Theorem of Prehomogeneous Vector Spaces, its extension to V ?, and the complex s-plane, satisfies functional equations similar to those for local zeta functions. A trace of π(f) can then be defined by subtracting the singular contributions of the poles of the meromorphic extension.  相似文献   

11.
Let G be a group acting faithfully on a set X. The distinguishing number of the action of G on X, denoted D G(X), is the smallest number of colors such that there exists a coloring of X where no nontrivial group element induces a color-preserving permutation of X. In this paper, we consider the distinguishing number of two important product actions, the wreath product and the direct product. Given groups G and H acting on sets X and Y respectively, we characterize the distinguishing number of the wreath product GY H in terms of the number of distinguishing colorings of X with respect to G and the distinguishing number of the action of H on Y. We also prove a recursive formula for the distinguishing number of the action of the Cartesian product of two symmetric groups S m × S n on [m] × [n].  相似文献   

12.
Jiakuan Lu 《代数通讯》2013,41(10):3726-3732
A subgroup H of a finite group G is called a QTI-subgroup if C G (x) ≤ N G (H) for any 1 ≠ x ∈ H. In this article, the finite groups all of whose second maximal subgroup are QTI-subgroups are classified.  相似文献   

13.
Emerson de Melo 《代数通讯》2013,41(11):4797-4808
Let M = FH be a finite group that is a product of a normal abelian subgroup F and an abelian subgroup H. Assume that all elements in M?F have prime order p, and F has at most one subgroup of order p. Examples of such groups are dihedral groups for p = 2 and the semidirect product of a cyclic group F by a group H of prime order p such that C F (H) = 1 or |C F (H)| =p and C F/C F (H)(H) = 1. Suppose that M acts on a finite group G in such a manner that C G (F) = 1. We prove that the Fitting height h(G) of G is at most h(C G (H))+ 1. Moreover, the Fitting series of C G (H) coincides with the intersection of C G (H) with the Fitting series of G.  相似文献   

14.
We prove that a finite solvable group G admitting a Frobenius group FH of automorphisms of coprime order with kernel F and complement H such that [G, F] = G and C C G (F)(h) = 1 for all nonidentity elements h ∈ H, is of nilpotent length equal to the nilpotent length of the subgroup of fixed points of H.  相似文献   

15.
Yan Wang 《代数通讯》2013,41(10):3821-3836
We call a subgroup H of a group G nearly s-normal in G if there exists N ? G such that HN ? G and HN ≤ H sG , where H sG is the largest s-permutable subgroup of G contained in H. In this article, we obtain some results about the nearly s-normal subgroups and use them to characterize the structure of finite groups.  相似文献   

16.
Timothy J. Ford 《代数通讯》2013,41(9):3277-3298
We study algebra classes and divisor classes on a normal affine surface of the form z 2 = f(x, y). The affine coordinate ring is T = k[x, y, z]/(z 2 ? f), and if R = k[x, y][f ?1] and S = R[z]/(z 2 ? f), then S is a quadratic Galois extension of R. If the Galois group is G, we show that the natural map H1(G, Cl(T)) → H1(G, Pic(S)) factors through the relative Brauer group B(S/R) and that all of the maps are onto. Sufficient conditions are given for H1(G, Cl(T)) to be isomorphic to B(S/R). The groups and maps are computed for several examples.  相似文献   

17.
Let G be a complete monomial group with abelian base, namely, G = AwrSym m , the wreath product of a finite abelian group A with the symmetric group on m letters. Then the group G is determined by its integral group ring.  相似文献   

18.
Let G be a simple linear algebraic group defined over ? and P ? G a maximal proper parabolic subgroup such that m: = dim ? G/P ≥ 5. Let ι: Z 1Z 2?G/P be a smooth complete intersection such that degree(Z i ) ≥ (m ? 1)·index(G/P)/m, i = 1, 2. Then the vector bundle ι*T(G/P) → Z 1Z 2 is semistable.  相似文献   

19.
Mohamed Asaad 《代数通讯》2013,41(6):2319-2330
Let G be a finite group. A subgroup H of G is said to be weakly s-supplemented in G if there exists a subgroup K of G such that G = HK and HK ≤ H s G , where H s G is the subgroup of H generated by all those subgroups of H which are s-quasinormal in G. In this article, we investigate the structure of G under the assumption that some families of subgroups of G are weakly s-supplemented in G. Some recent results are generalized.  相似文献   

20.
Let G be a non-abelian group and Z(G) be the center of G. Associate a graph Γ G (called noncommuting graph of G) with G as follows: Take G?Z(G) as the vertices of Γ G , and join two distinct vertices x and y, whenever xy ≠ yx. Here, we prove that “the commutativity pattern of a finite non-abelian p-group determine its order among the class of groups"; this means that if P is a finite non-abelian p-group such that Γ P  ? Γ H for some group H, then |P| = |H|.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号