首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The radiation-induced copolymerization of isobutyl vinyl ether with trichloroethylene was investigated in the temperature range from ?50°C to 100°C over a wide range of comonomer compositions. A copolymer was obtained in which the monomers alternate with regularity along the polymer chain over essentially the entire range of comonomer compositions. Both the rate of copolymerization and the number-average molecular weight of the resulting copolymer were found to depend strongly on the initial comonomer composition. The monomer reactivity ratios were determined and correspond well with calculated values. An apparent activation energy of 3.2 kcal/mole was obtained for the copolymerization process which exhibits a dose rate dependence of 0.72. The number-average molecular weight was found to be strongly dependent on the irradiation temperature, reaching a maximum value at 5°C.  相似文献   

2.
The copolymerizations of l-menthyl vinyl ether (l-MVE) with the monomers vinylene carbonate (VCA) and indene (IN) were carried out in benzene with azobisisobutyronitrile (AIBN) as an initiator to obtain optically active copolymers. The optically active l-menthyl residue from the copolymer main chain was removed using dry hydrogen bromide gas. After the ether cleavage reaction, the copolymers prepared (VA–VCA and VA–IN) were still optically active, and hence it was found that asymmetric induction had taken place in the copolymer main chain. The optical rotatory dispersion (ORD) and circular dichroism (CD) data of the original and ether-cloven copolymers were also determined.  相似文献   

3.
Copolymerization of vinylene carbonate (VCA) with methyl trifluoroacrylate (MTFA) was carried out by gamma rays from 60Co at dose rates of 1 × 105 rad/h to 1 × 106 rad/h, temperatures of 0°C to 75°C, and molar ratios MTFA/VCA of 30/70 to 90/10 in the monomer mixture. By irradiation, VCA reacted with MTFA to give a white powder copolymer with low molecular weight. The copolymerization rate has a maximum at a concentration of 70 mol % VCA, and is proportional to the 0.92 power of dose rate. The apparent activation energy was 1.3 kcal/mol. Equimolar copolymer was obtained at molar ratio MTFA/VCA of 50/50 to 10/90. The reactivity ratios of both monomers, VCA and MTFA, were determined to be r(VCA) = 0.3 and r(MTFA) = 0.07, respectively.  相似文献   

4.
5.
Isobutyl vinyl ether has been polymerized under conditions well known to yield isotactic polymer, viz., with boron trifluoride etherate at 78°C. in a nonpolar hydrocarbon diluent. A particular mixed solvent ratio and previous dissolution of catalyst enabled the polymerization to proceed homogeneously at the beginning. By following the temperature rise in an initially thermostatted system, we showed that the progress of the reaction eventually proceeded via a homogeneous phase to a gellike phase. Isotactic polymer is shown to be produced in both steps by a mechanism of slow chain propagation.  相似文献   

6.
7.
8.
The MeCH(O-i-Bu)Cl/TiCl4/MeCONMe2 initiating system was found to induce the rapid living carbocationic polymerization (LCPzn) of isobutyl vinyl ether (IBuVE) at ?100°C. Degradation by dealcoholation which usually accompanies the polymerization of alkyl vinyl ethers by strong Lewis acids is “frozen out” at this low temperature and poly(isobutyl vinyl ether)s (PIBuVEs) with theoretical molecular weights up to ca. 40,000 g/mol (calculated from the initiator/monomer input) and narrow molecular weight distributions (M?w/M?n ≤ 1.2) are readily obtained. According to 13C-NMR spectroscopy, PIBuVEs prepared by living polymerization at ?100°C are not stereoregular. The MeCH(O-i-Bu)Cl/TiCl4 combination induces the rapid LCPzn of IBuVE even in the absence of N,N-dimethylacetamide (DMA). The addition of the common ion salt, n-Bu4NCl to the latter system retards the polymerization and meaningful kinetic information can be obtained. The kinetic findings have been explained in terms of TiCl4. IBuVE and TiCl4 · IBuVE and TiCl4 · PIBuVE complexes. The HCl (formal initiator)/TiCl4/DMA combination is the first initiating system that can be regarded to induce the LCPzn of both isobutylene (IB) and IBuVE. Polyisobutylene (PIB)–PIBuVE diblocks were prepared by sequential monomer addition in “one pot” by the 2-chloro-2,4,4-trimethylpentane (TMP-Cl)/TiCl4/DMA initiating system. Crossover efficiencies are, however, below 35% because the PIB + IBuVE → PIB-b-PIBuVE crossover is slow. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The radiation-induced copolymerization of chlorotrifluoroethylene with ethyl vinyl ether was investigated in the liquid phase at 20 and ?78°C over a wide range of monomer compositions. A copolymer was obtained in which the monomers alternate with regularity along the polymer chain over the entire range of monomer compositions investigated. Both the rate of copolymerization and the intrinsic viscosity of the resulting copolymer were found to depend strongly on the initial monomer composition, both reaching a maximum value at an equimolar concentration of the monomers. The monomer reactivity ratios were determined and correspond well with calculated values. A decrease in the irradiation temperature was accompanied by a marked decrease in the rate of copolymerization and the intrinsic viscosity of the copolymer.  相似文献   

10.
Radiation-induced free-ionic polymerization of isobutyl vinyl ether in bulk system has been studied by dilatometry and electrical conductivity measurement. Some refinements in kinetic treatment of estimate the propagation rate constant kp from the rate of polymerization and steady-state conductivity were attempted. Polymerization of superdried monomer which gave a half-power dose-rate dependence of Rp was carried out at 0, 25, and 50°C. The kp value obtained at 25°C and an activation energy for propagation were estimated as 1.2 ± 0.4 × 105 I./mole-sec and 9.6 ± 2.8 kcal/mole, respectively. In isobutyl vinyl ether, a propagation reaction in free-ionic mechanism was found to be characterized with a high frequency factor and presumably higher activation energy, compared with ion-pair mechanism. Discussions were also made as to several contrasting behaviors between the polymerization of alkyl vinyl ethers and other vinyl monomers as styrene both in free-ion and ion-pair mechanisms.  相似文献   

11.
The radiation-induced ionic polymerization of isobutyl vinyl ether was investigated under conditions where the monomer was dried with molecular sieves. The investigation covered the temperature range from ?16°C to 90°C, and the dose-rate range from 1015 to 1020 eV/g-sec, using both γ-rays and electrons. A very high overall activation energy of 15.9 kcal/mole was found for the process below 30°C. Above 30°C, however, the value of the overall activation energy dropped to 4.9 kcal/mole, a phenomenon which is ascribed to the solvation of the propagating carbonium ion below 30°C. The dose-rate dependence of the rate of polymerization was found to be 0.58 over the entire dose-rate range investigated. The molecular weight of the polymer was found to be far less sensitive to trace amounts of water than the rate of polymerization. The molecular weight of the polymer depended strongly on the irradiation temperature, reaching a maximum value of about 120,000 at 35°C. It is shown that at temperatures above 20°C regenerative chain transfer processes play an important role in determining the molecular weight of the polymer.  相似文献   

12.
l-Menthyl vinyl ether (l-MVE) was homopolymerized and copolymerized with the monomers indene (IN) and acenaphthylene (ANp) by BF3OEt2 as a catalyst. The chiral menthyl substituent was cloven from the homopolymers and copolymers using dry-hydrogen bromide gas. After the removal of optically active menthyl group, poly(vinyl alcohol) (PVA) from l-MVE homopolymer was optically inactive, and copolymers (VA-IN, VA-ANp) from l-MVE-IN and l-MVE-ANp copolymers were still optically active. Hence, in the case of l-MVE homopolymer, it was concluded that asymmetric induction in the polymer main chain can only produce pseudoasymmetry. In the case of l-MVE-IN and l-MVE-ANp copolymers, it was found that asymmetric induction proceeded in the copolymer main chain and was caused by the influence of chiral menthyl group.  相似文献   

13.
Vinyl ether of cholesterol has been polymerized through the free-radical mechanism with a yield of up to 30% to obtain optically active soluble oligomers. By the example of acrylonitrile, N-vinylpyrrolidone, ethylene glycol vinyl glycidyl ether, and N-vinyl-4,5,6,7-tetrahydroindole, it has been established that optically active copolymers of cholesterol may be synthesized.  相似文献   

14.
15.
The polymerization of isobutyl vinyl ether was studied in a heterogeneous system using iron (II) sulfate calcined in air at various temperatures as a catalyst. The maximum activity was shown by the catalyst calcined at 700°C, which effected the polymerization at room temperature in a few seconds, while the sulfate treated at 750°C was totally inactive. Poly(vinyl ethyl ether) was also obtained by the FeSO4 (700°C) catalyst at room temperature. This catalyst formed the crystalline polymer (melting temperature 135–138°C) when the reaction was performed in toluene as solvent at room temperature. Poisoning experiments with Hammett indicators were carried out with the FeSO4 (700°C) catalyst. The treatment with n-butylamine rendered it inactive in the reaction of isobutyl vinyl ether, while its catalytic activity was little affected by dicinnamalacetone. On the basis of the observed results, the nature of active sites of catalyst is discussed.  相似文献   

16.
Initiation and propagation mechanisms of the spontaneous polymerization of the system nitroethylene–isobutyl vinyl ether were studied. An equimolar mixture of these two monomers gives white precipitates below room temperature, though they react explosively to give viscous products at higher temperature. The precipitate was found to be composed of a polynitroethylene and a cycloadduct of these two monomers. The isolated cycloadduct product is so reactive that it not only polymerizes itself spontaneously but also initiates the polymerization of nitroethylene. The polymerization of the cycloadduct was revealed to proceed without termination to produce an alternate copolymer of these two monomers. These results indicate that the explosive spontaneous polymerization of this system consists of three elementary reaction processes; (1) cycloaddition reaction between two monomers, (2) anionic polymerization of nitroethylene induced by the cycloadduct, and (3) the living ring-opening polymerization of the cyclo-adduct.  相似文献   

17.
The cationic polymerization of isobutyl vinyl ether was examined with transition‐metal ate complexes with trityl cation as initiators. The initiators were generated by the reaction of triphenylmethyl chloride [trityl chloride (TrCl)] with ate complexes of Nb, Mo, and W with lithium cation, which were obtained in situ by the reaction of the transition‐metal halides with anionic reagents (organolithium or lithium amide). When the polymerization was initiated with a mixture of TrCl and Li+[NbH5(NnBuPh)]?, the resulting poly(isobutyl vinyl ether)s had narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.13–1.20). Although the polymerization was supposed to be initiated by the electrophilic attack of the trityl cation, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of the resulting poly(isobutyl vinyl ether)s revealed the presence of H at the α‐chain end. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2636–2641, 2006  相似文献   

18.
Water-soluble diblock copolymers of methyl tri(ethylene glycol) vinyl ether (hydrophilic block) and isobutyl vinyl ether (hydrophobic block) of different molecular weights and composition were synthesized by living cationic polymerization. The molecular weight and comonomer composition of these copolymers were determined by GPC and 1H NMR spectroscopy, respectively. Aqueous solutions of the copolymers were characterized in terms of their micellar behavior using dynamic light scattering, aqueous GPC, and dye solubilization. All the copolymers formed aggregates with the exception of a diblock copolymer with only two hydrophobic monomer units. The micellar hydrodynamic size scaled with the 0.61 power of the number of hydrophobic units, in good agreement with a theoretical exponent of 0.73. An increase in the length of the hydrophobic block at constant hydrophilic block length or an increase in the overall polymer size at constant block length ratio both resulted in lower critical micelle concentrations (cmcs). The cloud points of 1% w/w aqueous solutions of the polymers were determined by turbidimetry. An increase in the length of the hydrophobic block at constant hydrophilic block length caused a decrease in the cloud points of the copolymers. However, an increase in the overall polymer size at constant block length ratio led to an increase in the cloud point. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The copolymerization of a highly fluorinated cyclic monomer, octafluorocyclopentene (OFCPE, M1), with ethyl vinyl ether (EVE, M2) was investigated with a radical initiator in bulk. Despite the poor homopolymerizability of each monomer, the copolymerization proceeded successfully, and the molecular weights of the copolymers reached up to more than 10,000. Incorporation of the OFCPE units into the copolymer led to an increase in the glass‐transition point. The copolymer composition was determined from 1H NMR spectra and elemental analysis data. The molar fraction of the OFCPE unit in the copolymer increased and approached but did not exceed 0.5. The monomer reactivity ratios were estimated by the Yamada–Itahashi–Otsu nonlinear least‐squares procedure as r1,OFCPE = ?0.008 ± 0.010 and r2,EVE = 0.192 ± 0.015. The reactivity ratios clearly suggest that the copolymerization proceeds alternatively in the case of an excessive feed of OFCPE. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1151–1156, 2002  相似文献   

20.
Isobutyl propenyl ether [IBPE; CH3CH=CH? OCH2CH(CH3)2] was polymerized with a mixture of hydrogen iodide and iodine (HI/I2 initiator) in n-hexane at ?40°C to yield living polymers with a nearly monodisperse molecular weight distribution (MWD) (M?w/M?n ≈ 1.1). The number-average molecular weight (M?n) of the polymers increased proportionally to IBPE conversion and further increased when a new monomer feed was added to a completely polymerized solution. The M?n was controlled by the initial concentration of hydrogen iodide if the acid was charged in excess over iodine. In polymerization by iodine alone the M?n of the polymers obtained in nonpolar solvents (n-hexane and toluene) also increased with conversion, but their MWD was broader (M?w/M?n = 1.3–1.4) than in the HI/I2-initiated systems under similar conditions. The iodine-initiated polymerization in polar CH2Cl2 solvent, in contrast, led to nonliving polymers with a broad MWD (M?n/M?n = 1.6–1.8) and M?n, independent of conversion. The living polymerization of IBPE was also compared with that of the corresponding isobutyl vinyl ether, to determine the effect of the β-methyl group in IBPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号