首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was carried to determine experimentally the crosslinking of irradiated polypropylene by ultraviolet rays in vacuo. Three methods of detecting crosslinking were used: measuring the degree of swelling in decalin at room temperature, measuring the gel fraction in a tetrachloroethylene solution of the irradiated sample, and comparing the infrared spectra before and after irradiation. It was found that as the time of irradiation increases, the degree of swelling decreases, whereas the gel fraction in tetrachloroethylene solution increases. This shows that the crosslinking reaction proceeds with time. On the other hand, the infrared spectra of the irradiated sample remained almost unchanged, which shows that different bond species can hardly be formed by irradiation in vacuo. From these facts it may be concluded that the measurements amply confirm the hypothesis. Furthermore, it is demonstrated that ash residue in polypropylene plays an important role in photocrosslinking; that is, the photochemical primary process of the reaction is the absorption of light by the ash residue.  相似文献   

2.
In order to investigate the effects of oxygen on the radiation-induced postpolymerization of trioxane in the solid state, a kinetic study has been made. Trioxane was purified by sublimation through Ag2O and Na-K alloy in vacuo and was irradiated and polymerized in the presence of rigorously dry oxygen. It was found that the initial rate of polymerization and the polymer yields are larger than those obtained in vacuo. By using the kinetic scheme proposed previously the results were analyzed kinetically. It was found that the influence of oxygen on the postpolymerization of trioxane is mainly attributable to the increase in the concentration of active species. The results obtained in dry air have been discussed in comparison with those in vacuo reported previously.  相似文献   

3.
A comparison of solid-state 13C nuclear magnetic resonance (NMR) spectra of virgin and vacuum γ-irradiated poly (ethylene oxide) (PEO) evidences marked differences. The unirradiated PEO shows a well-resolved amorphous resonance and a weak, broad envelope of crystalline resonances, while the irradiated PEO presents well-resolved resonances for both the crystalline and amorphous carbons. Upon recrystallization from the melt both PEO samples yield solid-state 13C NMR spectra that are closely similar to that of the virgin, unheated sample. Observation of both melt-recrystallized samples at ?60°C yields similar spectra with well-resolved crystalline resonances. Crosslinking is the predominant chemical change occurring during the γ-irradiation of PEO under vacuum and produces a change in the motional character of the crystalline phase. This change is not the result of a reduction in crystallinity as evidenced by differential scanning calorimetry (DSC) observations. The most probable explanation is that the crosslinks are concentrated at the surface of the crystalline lamellae with a resultant change in the low frequency molecular motions of the crystalline chains. This motional change shifts the T1pH such that the crystalline carbon nuclei can now be cross-polarized at room temperature and the resonance linewidth is reduced. Following melting and recrystallization the motional characteristics of the irradiated PEO are nearly identical to those of the unirradiated sample, probably as a result of a redistribution of the crosslinks throughout the amorphous phase during recrystallization.  相似文献   

4.
The radiation-induced polymerization of tetraoxane in the solid state has been investigated in air and in vacuo. The polymerization rate was higher in air than in vacuo, whereas the molecular weight of the polymer obtained at high conversion in air was considerably lower than in vacuo. A large decrease in the molecular weight with increasing polymer yield observed in air may be explained mainly by degradation during polymerization.  相似文献   

5.
Crystallization in a series of variable crosslink density poly(dimethyl‐diphenyl)siloxanes random block copolymers reinforced through a mixture of precipitated and fumed silica fillers has been studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), nuclear magnetic resonance (NMR), and X‐ray diffraction (XRD). The silicone composite studied was composed of 94.6 mol % dimethoylsiloxane, 5.1 mol % diphenylsiloxane, and 0.3 mol % methyl‐vinyl siloxane (which formed crosslinking after peroxide cure). The polymer was filled with a mixture of 21.6 wt % fumed silica and 4.0 wt % precipitated silica previously treated with 6.8 wt % ethoxy‐end‐blocked siloxane processing aid. Molecular weight between crosslinks and filler–polymer interaction strength were modified by exposure to γ‐irradiation in either air or in vacuo. Isothermal DMA experiments illustrated that crystallization at ?85 °C occurred over a 1.8 hour period in silica‐filled systems and 2.2–2.6 hours in unfilled systems. The crystallization kinetics for irradiated samples were found to be dependent on crosslink density. Irradiation in vacuo resulted in faster overall crystallization rates compared to air irradiation for the same crosslink density, likely due to a reduction in the interaction between the polymer chains and the silica filler surface for samples irradiated in air. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1898–1906, 2006  相似文献   

6.
Measurements of molecular weight averages and distributions have been made on three samples of narrow molecular size distribution polystyrene with molecular weights from 100, 000 to 400, 000 subjected to 60Co γ irradiation in vacuo for various doses within the pregel region+ G(X), the radiation chemical yield of crosslinking, has been determined as 0.043 ± 0.002 and G(S)/G(X), the ratio of scission to crosslinking, as 0.02; no effect of molecular weight was observed. By comparison with previous experimental results for polystyrene irradiated in air it has been established unequivocally that an oxygen environment leads to enhanced scission at the expense of crosslinking. Literature values of G(X) and G(S)/G(X) are reviewed in the light of these results and explanations are offered to account for major discrepancies.  相似文献   

7.
Quenched and annealed samples of linear low-density polyethylene (LLDPE) were irradiated with 60Co γ rays in vacuo at room temperature. The data follow rather accurately Charlesby's equation s = k/r, where s is the soluble fraction, r the dose, and k a constant from which G(X), the G-value for crosslinks, was calculated. Crosslinking in the LLDPE is about twice as extensive at equal doses as in LHDPE. Production of vinylene unsaturation was approximately the same in the two types of polyethylene.  相似文献   

8.
Polypropylene films were irradiated with 60Co γ-rays in vacuum or in air and stored in air. Just after irradiation, the concentration of carbonyl group of the sample irradiated in air only increased with dose. The concentrations of both samples increased with storage time. The more the absorbed doses, the higher the increasing rates. The increasing rate of the concentration of carbonyl group during irradiation in air was higher than those during storage in air. Just after irradiation, the tensile strengths and the elongations of the both samples somewhat increased with dose at the doses less than 5 Mrad, but decreased at doses more than 13 Mrad. The tensile strength and the elongation of the sample irradiated in air decreased with storage time. Those of the sample irradiated in vacuum also decreased with storage time but the decreasing rates were much smaller than those in the sample irradiated in air. The gel fractions of the samples irradiated in vacuum and annealed in vacuum were somewhat higher than those irradiated in vacuum and not annealed. To elucidate high oxidation rate in the sample irradiated in air during and after irradiation, reaction mechanisms were discussed. To clarify the difference of mechanical properties between the samples irradiated in vacuum and in air, the effect of crosslink was considered, together with the oxidation.  相似文献   

9.
A three-step infrared (IR) macro-fingerprint method combining conventional IR spectra, and the secondary derivative spectra with two-dimensional infrared correlation spectroscopy (2D-IR), was developed to analyze Spirulina powder before and after gamma irradiation. In the IR spectra, most of the absorption peaks of samples irradiated at 1, 2.7, 6, and 10.4 kGy had lower intensities than the non-irradiated ones, whereas peaks at 1152, 1078, and 1051 cm−1 were slightly enhanced with irradiation at 2.7, 6, and 10.4 kGy. Their second derivative spectra amplified the differences and revealed that irradiation affected the C=O band of carboxylic acid and esters, and the N–H band of proteins. The peaks at 1746 and 1741 cm−1, and those at 1730 and 1725  cm−1 became two broad peaks. Meanwhile, the three sharp peaks at 1548 cm−1, 1544 cm−1 and 1536 cm−1 changed to two broad peaks at around 1547 and 1534 cm−1 after irradiation at doses higher than 1 kGy. The characteristic IR bands from 1700 cm−1 to 1600 cm−1, which represent the C=O band in proteins, also have different shapes and intensities after irradiation. The finding indicated that irradiation affected the secondary structures of protein which was confirmed by curve fitting results. During the process of increasing the temperature from 50 to 210 °C, the ratio of amide I to II in absorption intensities in the 2D-IR spectra of the irradiated samples varied with different response for different samples. Saccharides in Spirulina powder had a higher thermostability than proteins, but the autopeaks of irradiated samples did show differences from the non-irradiated sample. The intensity of autopeaks at 1012 cm−1 increased dramatically in the irradiated samples while that of peaks at 1053, 1071, and 1083 cm−1 decreased after irradiation. Based on the three-step IR macro-fingerprint method, irradiated Spirulina powder samples were successfully and fast identified and discriminated.  相似文献   

10.
The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β–γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. The deconvolution algorithm of the SDAT requires a library of β–γ coincidence spectra of individual radioxenon isotopes to determine isotopic ratios in a sample. In order to get experimentally produced spectra of the individual isotopes, we have irradiated enriched samples of 130Xe, 132Xe, and 134Xe gas with a neutron beam from the TRIGA reactor at The University of Texas. The samples were counted in an Automated Radioxenon Sampler/Analyzer (ARSA) style β–γ coincidence detector. The spectra produced show that this method of radioxenon production yields samples with very high purity of the individual isotopes for 131mXe and 135Xe and a sample with a substantial 133mXe to 133Xe ratio.  相似文献   

11.
An application of the multivariate calibration technique of partial least-squares (PLS) regression to near-infrared spectra of a fiber-optic sensor based on the evanescent wave principle is presented. The sensing element consists of a quartz glass fiber with a silicone cladding which enriches nonpolar water contaminants. Due to the interaction of the extracted molecules with the part of the light which is transmitted in the evanescent wave zone of the cladding, absorbance spectra of the contaminants can be collected. In view of a sensor application for in-situ environmental analysis, aqueous solutions of chlorinated hydrocarbon solvents (CHS), which often can be found as major water contaminants, have been measured. PLS regression was applied to three sets of CHS samples, representing typical features of NIR evanescent wave spectral data. These are, e.g., strong overlapping of the absorption bands of different CHS components, peak distortions due to temperature variations between reference and sample measurement and noisy data at analyte concentrations near to the limit of detection, respectively. For trichloroethene and 1,1-dichloroethene, where the calibration model was built for samples within a small concentration range of 1–9 mg l–1, satisfactory prediction results could be obtained with a relatively small root-mean-square error of 0.3 mg l–1 compared to analytical reference measurements. In contrast to this, for a three component system of dichloromethane, trichloromethane and trichloroethene with strongly overlapping absorption bands, where samples over a very broad concentration range from 3–4940 mg l–1 were included in the PLS model, the prediction accuracy decreased enormously and for some samples strong deviations between real and predicted data occurred. Nevertheless, applying multivariate calibration to this difficult system with similar spectral features and huge differences in the concentration of the species allowed an acceptable spectral distinction and at least a semi-quantitative determination of the CHS species.  相似文献   

12.
The formation of carbonaceous clusters in ion‐irradiated polymer films was investigated extensively. Information about these clusters may be obtained with ultraviolet–visible (UV–vis) spectroscopy. The optical band gap (Eg), calculated from the absorption edge of the UV spectra of these polymers, can be correlated to the number of carbon atoms (N) in a cluster with the modified Tauc equation. The structure of the cluster is also related to Eg; for example, a six‐membered‐benzene‐ring‐type structure has an Eg of ≈5.3 eV, whereas a buckminsterfullerene‐type structure has an Eg of ≈4.9 eV. These clusters are responsible for the electrical conductivity in these films. In this work, polycarbonate films (20 μm thick) were irradiated with 45‐MeV Li ions at fluences of 1 × 1012 to 1 × 1013 cm−2 and were characterized with UV–vis spectroscopy and impedance measurements. The Eg values, calculated from the absorption edge in the 280–315‐nm region with the Tauc relation, varied from 4.39 to 4.35 eV for the pristine and various irradiated samples, respectively. The cluster size showed a range of 60–62 carbon atoms per cluster. The sheet conductivity (σdc) and loss (tan δ) values of 10−16 Ω−1cm−1 and 10−3 for the pristine sample changed to 10−15 Ω−1cm−1 and 10−2, respectively, for the irradiated samples. This increase in the values of σdc and tan δ may be correlated to the increase in the size of the carbonaceous clusters. This study provides insight into the mechanism of electrical conductivity in irradiated polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1589–1594, 2000  相似文献   

13.
1H High resolution magic angle spinning (HRMAS) NMR spectroscopic data in combination with principal components analysis and analysis of variance were used to differentiate between irradiated and non‐irradiated cold‐smoked Atlantic salmon (Salmo salar). NMR profiling was obtained, with a spectral acquisition time of less than 8 min, from a small sample size of intact white salmon muscle, by non‐destructive analysis that includes a very simple and rapid sample preparation step. Results obtained enable the use of creatine, trimethylamine oxide and the sum of phosphorylcholine and glycerophosphorylcholine as diagnostic compounds to detect irradiation treatment. This study shows the potential of 1H‐HRMAS to be a rapid method for investigating compositional changes due to food processing as well as to confirm the presence or absence of some bioactive compounds in irradiated samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Acrylamide, N-tert-butylacrylamide, and propionamide crystals were irradiated at ?196°C and the structures of radicals studied by ESR spectroscopy at various temperatures. The γ-irradiated acrylamide crystals show a five-line spectrum which is similar in shape to the signal obtained from the γ-irradiated propionamide crystals. Two types of radicals are produced in irradiated acrylamide and propionamide crystals at ?196°C. When the irradiated samples are kept at ?78°C the spectrum of propionamide remains the same, except in intensity. In contrast to this, the acrylamide spectrum changes to a triplet because of dimerization. Upon warming the irradiated acrylamide sample to between ?50 and ?30°C, some small new peaks become apparent on either side of the triplet. These new peaks disappear above ?20°C and the spectrum changes to a triplet because of polymerization. To observe the changes in the ESR spectra of γ-irradiated N-tert-butylacrylamide we kept the sample at various temperatures from ?196 to 100°C. From ?196°C to about room temperature the spectrum is a quintet. At and above 35°C, the spectrum changes to a triplet with shoulders on either side of the main peaks. With further warming above 80°C the spectrum changes to a broad triplet.  相似文献   

15.
Determination of CsF, TlF, and RbF surface areas by the B.E.T. method using 85Kr is described. Surface areas of CsF and TlF samples are increased markedly by sample pretreatment, either by heating in vacuo or by reaction with hexafluoroacetone in acetonitrile. The latter method is particularly effective for CsF. RbF samples are less sensitive to pretreatment.  相似文献   

16.
ESR spectra of purified and ferric ion-sensitized celluloses irradiated with ultraviolet light in vacuo at 45, 20, ?80, and ?196°C were recoreded and compared. Generally, several kinds of spectra, viz., singlet, three-line, five-line, and seven-line spectra, were observed. At higher temperatures, only singlet and three-line spectra of stable free-radical species were detected, whereas at lower temperatures such as at ?196°C, two doubled spectra of formyl radicals and hydrogen atoms were also detected in addition to cellulose radicals. It is believed that the intricate spectra observed at low temperatures are superimposed upon spectra generated by free radicals which may or may not be stable at high temperatures. During reirradiation at ?196°C with an alternative light sources, i.e., λ > 2537 Å and λ > 3400 Å, of samples which were irradiated at 20°C or at ?196°C, phenomena indicative of radical transformation and formation of new radicals or of decay of radicals in terms of ultraviolet bleaching were observed on studying the changes of line-shapes and relative signal intensities of the spectra.  相似文献   

17.
The detection and identification of dilute bacterial samples by surface-enhanced Raman spectroscopy has been explored by mixing aqueous suspensions of bacteria with a suspension of nanocolloidal silver particles. An estimate of the detection limit of E. coli was obtained by varying the concentration of bacteria. By correcting the Raman spectra for the broad librational OH band of water, reproducible spectra were obtained for E. coli concentrations as low as approximately 103 cfu/mL. To aid in the assignment of Raman bands, spectra for E. coli in D2O are also reported. Figure Light scattering apparatus used to detect bacteria  相似文献   

18.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

19.
The photosensitized degradation of poly(L ‐lactic acid) (PLA) via an anionic reaction process was studied using spectrophotometry, electron spin resonance (ESR), and gel permeation chromatography (GPC) measurements. PLA film doped with N,N,N′,N′‐tetramethyl‐p‐phenylenediamine (TMPD) was irradiated at 77 K using UV light (λc = 356 nm) by which the PLA matrix itself cannot be directly excited. After photoirradiation, a new broad absorption band appeared over the original spectrum due to TMPD+ ·, which was produced by two‐photon ionization. The ESR spectrum of the irradiated sample indicated the presence of the TMPD+ · radical and main‐chain scission radical of PLA. During the thermal annealing at 0 °C, the latter radical changed to another radical species by dehydrogenation of the alpha hydrogen of the PLA main chain. TMPD+ · was extremely stable at room temperature for 7 d. However, by thermal annealing at 40 °C, all the radicals decayed due to the enhanced molecular motions near Tg of PLA (58.7 °C). Spectral simulation for the obtained ESR spectra revealed the relative amounts of four radicals: TMPD+ ·, a main‐chain scission radical, a main‐chain tertiary radical, and an unknown radical. The last one was tentatively assigned to the PLA radical anion because of its short decay time. GPC measurements clearly indicated a decrease in the molecular weight of PLA after irradiation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 706–714, 2001  相似文献   

20.
The composition and chemical state of iron and boron in the surface layer of iron boride under different kinds of pretreatment of samples have been investigated by the method of X-ray photo-electron spectroscopy. It has been found that in the initial sample there is oxygen chemically combined with iron and boron atoms. Upon heating (450°C) in hydrogen, in argon, and in vacuo there occurs removal of oxygen only from iron atoms (no pure iron was found to be formed). Boron oxidizes and there probably appears a new surface combination of boron with oxygen in which the bonding energy of 1s electrons is higher than that in B2O3. Treatment of the iron boride surface with argon ions and with protons ensures uniform removal of oxygen from iron and boron atoms. It has been found that thermal treatment of iron boride leads to depletion of iron atoms from the sample surface layer, and pickling with argon ions and with protons leads to strong enrichment. Iron boride samples subjected to Ar+ and H+ bombardment tend to undergo significant oxidation when subsequently exposed to air at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号