首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel type of polyamides, N‐benzoylated wholly aromatic polyamides, were synthesized by low‐temperature solution polycondensation of a new aromatic bis(imidoyl) chloride, 4,4′‐oxydianilinobis(benzimidoyl) chloride, with aromatic dicarboxylic acids, 4,4′‐oxydibenzoic acid and isophthalic acid. Compared with the conventional all aromatic polyamides and also N‐phenylated wholly aromatic polyamides, these N‐benzoylated aramides exhibit better solubility in organic solvents, lower glass transition temperatures and thermal stability.  相似文献   

2.
A rapid dechlorination method of N-chloro poly(hexamethylene adipamide) and N-chloro poly(ε-caprolactam) to the corresponding polyamides was studied. This method can be used for molecular weight determinations of N-chloro polyamides by viscosimetric measurements. The dechlorination was achieved in formic acid solution by the reaction of N-chloro polyamides with trialkyl phosphites. The reaction was exothermic and vigorous and was applied to a series of products of various degrees of N-chlorination covering the range of 0–100%. No N—Cl was detected by iodimetric titration of the dechlorination products. The dechlorination of N-chloro polyamides was demonstrated by infrared (IR) spectroscopy. No significant molecular weight reduction except that taking place in the N-chlorination reaction of poly(hexamethylene adipamide) was observed.  相似文献   

3.
N-Alkyl-substituted polyamides and copolyamides have been prepared from N,N′-dialkyl p-xylenediamine and N,N′-dialkyl hexamethylenediamine with long-chain aliphatic dicarboxylic acids. Crystalline N-alkyl polyamides were obtained by the use of dicarboxylic acids higher than C16. The melting point versus composition curves for the crystalline N-alkyl copolyamides which were prepared from a mixture of diamine and the corresponding N-alkyl diamine with α,ω-octadecanedioic acid showed convex type plots. X-ray examination of N-alkyl copolyamides revealed that all the systems behaved in the same basic manner, the second component was always present without dissolving in the lattice of the first. Dilatometric curves showed two inflection points, corresponding to the melting points of the N-alkyl and unsubstituted polyamides respectively. From these results, a block copolymer structure was suggested for the N-alkyl copolyamides. The mechanisms for the formation of the block structure were also discussed.  相似文献   

4.
The synthesis and structure-property relations of a number of novel substituted paralinked aromatic homopolyamides and copolyamides are described. The synthesis of the polyamides was carried out by polycondensation of activated N,N'-bis-(trimethylsilyl) substitued aromatic diamines and aromatic diacid chlorides. In order to improve the solubility and to lower melting temperatures, novel arylsubstituted terephthalic acids moieties, such as p-terphenyl-2,5-dicarboxylic acid and o-terphenyl-2,5-dicarboxylic acid, were used in combination with substituted and noncoplanar diamines. Depending on the chemical structure, polyamides with very high solubility (up to 40% w/w) in polar aprotic solvents such as N,N-dimethylacetamide without the addition of inorganic salts were obtained. Lyotropic liquid crystalline behavior was observed for the first time in polyamides which contain noncoplanar biphenylene units.  相似文献   

5.
N-Phenylated aromatic polyamides of high molecular weights were synthesized by the hightemperature solution polycondensation of N,N′ -di(trimethylsilyl)-substituted dianilino compounds derived from p-dianilinobenzene, bis(4-anllinophenyl) ether, and α,α′-dianilino-p-xylene, with isophthaloyl and terephthaloyl chloride. Almost all of the N-phenylated polyamides were amorphous, and soluble in a variety of organic solvents including dimethylformamide, m-cresol, and chloroform. Transparent and flexible films of these polymers could be cast from the dimethylformamide solutions. Four wholly aromatic polyamides had glass transition temperatures in the range of 195–255°C, and began to lose weight around 400°C in air.  相似文献   

6.
李钦玲  周江  汤菲力  袁谷 《化学学报》2005,63(9):834-840
采用ESI-MS法研究了8个含有N-甲基吡咯(Py)和N-甲基咪唑(Im)杂环的聚酰胺质谱的特征和碎裂机理. MSn数据表明, 聚酰胺化合物的主要碎裂路径是环与环间化学键的断裂, 即C—CO键、CO—NH键、HN—C键的断裂, 同时伴随着H原子的重排. 利用这些碎裂特征, 可以得到聚酰胺丰富的结构信息和区分它们的两种同分异构体.  相似文献   

7.
A new series of modified polyisophthalamides bearing N-benzylidene pendant groups was prepared by reacting various aromatic diamines with 5-(N-benzylidene) isophthalic acid. The latter was synthesized from the reaction of 5-aminoisophthalic acid with benzaldehyde and characterized by IR and 1H-NMR spectroscopy. Triphenyl phosphite and pyridine was used as condensing agents for preparing polyamides. In addition, the corresponding unsubstituted polyisophthalamides were prepared under identical experimental conditions for comparative purposes. Characterization of modified polyamides was accomplished by IR as well as inherent viscosity measurements. They showed a slightly lower solubility in various media than the corresponding unsubstituted polyamides. The cured modified polyamides displayed significantly higher thermal stability than the cured unsubstituted polyamides. They were stable up to 355–308°C in N2 or air and afforded anaerobic char yield of 66–61% at 800°C. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
New N-phenylated aromatic-aliphatic and all aromatic polyamides were prepared by the high-temperature solution polycondensation of 4,4′-dianilinobiphenyl with both aliphatic (methylene chain lengths of 6–11) and aromatic dicarboxylic acid chlorides. All of the aromatic-aliphatic polyamides and the wholly aromatic polyamides exhibited an amorphous nature and good solubility in amide-type and chlorinated hydrocarbon solvents, except for those aromatic polyamides containing p-oriented phenylene or biphenylylene linkages in the backbone; the latter were crystalline and insoluble in organic solvents except m-cresol. The N-phenylated aromatic-aliphatic polyamides and aromatic polyamides had glass transition temperatures in the range of 79–116°C and 207–255°C, respectively, and all the polymers were thermally stable with decomposition temperatures above 400°C in air. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2193–2200, 1998  相似文献   

9.
New processable polyaromatic amides were prepared from the acid chloride of bis-m-carboxyphenyl acetylene (V), the acid chloride of 1,4-bis-m-carboxyphenyl-1,3-butadiene (VI), and several aromatic diamines. The polyamides that contained acetylene units were cured by Diels-Alder cycloaddition reaction with 1,4-diphenyl-1,3-butadiene, whereas the polyamides with 1,3-butadiene units were cured with N-phenyl maleimide. Cured polyamides showed an increase in tg, thermal, and heat stabilities. The polyamides can be cast into films and produce good glass-fiber laminates.  相似文献   

10.
A number of polyamides and model amides based on 3,3′-dimethylnaphthidine and various dicarboxylic acids were synthesized in N-methylpyrrolidone containing lithium chloride either by low temperature solution or by direct polycondensation using triphenyl phosphite and pyridine. The polyamides had inherent viscosities of 0.36?5.42 dL g?1 and were, in general, readily soluble in N-methylpyrrolidone. Amorphous members exhibited relatively high glass transition temperatures in the range of 340–380 and 200–230°C for aromatic and aliphatic polymers, respectively. All polyamides showed good thermal stability in nitrogen and in air.  相似文献   

11.
A series of N-methyl-substituted aromatic polyamides derived from the secondary aromatic diamines 4,4′-bis(methylamino)diphenylmethane, 3,3′-bis(methylamino)diphenylmethane, 4,4′-bis(methylamino)benzophenone or 3,3′-bis(methylamino)benzophenone and isophthaloyl dichloride, and terephthaloyl dichloride or 3,3′-diphenylmethane dicarboxylic acid dichloride was prepared by high-temperature solution polymerization in s-tetrachloroethane. Compared with analogous unsubstituted and partly N-methylated aromatic polyamides, the full N-methylated polyamides exhibited significantly lower glass transition temperatures (Tg), reduced crystallinity, improved thermal stability, and good solubility in chlorinated solvents.  相似文献   

12.
A new highly phenylated heterocyclic diamine, 3,4-bis(4-aminophenyl)-2,5-diphenylfuran, was synthesized in three steps from 4–-nitrodeoxybenzoin. The low temperature solution polycondensation of the diamine with various aromatic diacid chlorides afforded tetraphenylfuran-containing aromatic polyamides with inherent viscosities of 0.2–0.8 dL/g. Copolyterephthalamides were obtained from the diamine and 4,4′-oxydianiline. The polyamides were generally soluble in a wide range of solvents that included N,N-dimethylacetamide, N-methyl-2-pyrrolidone, pyridine, and m-cresol. Glass transition temperatures of the polyamides and copolyamides ranged from 302–342°C, and 10% weight loss was observed above 480°C in nitrogen.  相似文献   

13.
This work synthesized a series of new polyamides by direct polycondensation of 1,3-bis[4-(4-carboxyphenoxy)phenyl]adamantane ( I ) with various diamines. The diacid I was synthesized from 1,3-bis(4-hydroxyphenyl)adamantane in two steps. Polyamides III were soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and pyridine. The polyamides had medium inherent viscosities of 0.30–0.55 dL/g and number-average molecular weights (Mn) of 22,000–36,000. The polyamides III a and III b had tensile strengths of 59.8 and 77.5 MPa, elongation to breakage values of 5.8 and 7.6%, and initial moduli of 1.9 and 1.8 GPa, respectively. Their glass transition temperatures were found to be 219–295°C by means of differential scanning calorimetry (DSC). Dynamic mechanical analysis (DMA) reveals that the incorporation of rigid and bulky diamantane into polyamides III a and III b leads to high glass transition temperatures (Tgs), at 299 and 286°C, respectively. The decomposition temperatures of polyamides III at a 5% weight loss ranged from 388 to 416°C in air and from 408 to 435°C in N2 atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 785–792, 1998  相似文献   

14.
Novel aromatic polyamides, having inherent viscosities of 0.76-2.31 dL/g, were synthesized by the low temperature solution polycondensation of a new highly phenylated diamine monomer having an imidazolinone group, 1,3-bis(4-aminophenyl)-4,5-diphenylimidazoline-2-one (TPIDA), with various aromatic diacid chlorides. All the polymers were amorphous, and most of the polyamides were readily soluble in organic solvents such as N-methyl–2-pyrrolidone, N,N-dimethylacetamide (DMAc), and m-cresol. Flexible and tough films could be prepared from the DMAc solutions of these soluble aromatic polyamides. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyamides were in the range of 275–315°C and 430–505°C, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
A dicarboxylic acid monomer, 5-phthalimidoisophthalic acid, containing a phthalimide pendent group was prepared by the condensation of 5-aminoisophthalic acid and phthalic anhydride in glacial acetic anhydride. The monomer was reacted with various aromatic diamines to produce polyamides using triphenyl phosphite and pyridine as condensing agents. These polyamides were produced with inherent viscosities of 0.64–1.14 dL · g−1. All the polymers, characterized by wide-angle X-ray diffraction, revealed an amorphous nature resulting from the presence of the bulky pendent group. These polyamides exhibited excellent solubility in a variety of solvents such as N- methyl-2-pyrrolidinone, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide, dimethyl sulfoxide, pyridine, and cyclohexanone. These polyamides showed glass-transition temperatures (Tg's) between 247 and 273 °C (by DSC) and 248 and 337 °C (by a dynamic mechanical analyzer). The thermogravimetric analytic measurement revealed the decomposition temperature at 10% weight-loss temperatures (Td10) ranging from 442 to 530 °C in nitrogen. The polyamides containing phthalimide groups exhibited higher Tg and Td10 values than those having no phthalimide groups. Transparent, tough, and flexible films of these polyamides could be cast from the DMAc solutions. These casting films had tensile strengths ranging from 81 to 126 MPa, elongations at break ranging from 7 to 13%, and tensile moduli ranging from 2.0 to 2.9 GPa. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1557–1563, 2001  相似文献   

16.
5,5-Bis[4-(4-carboxyphenoxy)phenyl]hexahydro-4,7-methanoindan ( 3a ) and 5,5-bis[4-(4-aminophenoxy)phenyl]hexahydro-4,7-methanoindan ( 3b ) were prepared in two main steps starting from the aromatic nucleophilic halogen-displacement of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 5,5-bis(4-hydroxyphenyl)hexahydro-4,7-methanoindan in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides having polyalicyclic cardo units were directly polycondensated from dicarboxylic acid 3a with various aromatic diamines, or from diamine 3b with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. High molecular weight polyamides with inherent viscosities between 0.73 and 1.44 dL/g were obtained. All polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and afforded transparent, flexible, and tough films by solution casting. The glass-transition temperatures (Tg) of these aromatic polyamides were in the range of 219–253°C by DSC, and the 10% weight loss temperatures in nitrogen and air were above 467 and 465°C, respectively. A comparative study of some polyamides with an isomeric repeat unit is also presented. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4510–4520, 1999  相似文献   

17.
New fluorine-containing aromatic polyamides with inherent viscosities of 0.4–1.8 dL/g were prepared by the low temperature solution polycondensation of tetrafluoroisophthaloyl and tetrafluoroterephthaloyl chlorides with N,N′-bis(trimethylsilyl)-substituted aromatic diamines. The aromatic polyperfluoroisophthalamides were amorphous polymers with glass transition temperatures around 280°C, whereas the polyperfluoroterephthalamides were crystalline. Most of these aromatic polyamides were soluble in organic solvents, and began to decompose around 330°C in air or nitrogen atmosphere.  相似文献   

18.
N-Phenylated aromatic polyamides and copolyamides derived from N,N′-diphenyl-p-phenylenediamine, isophthaloyl, and terephthaloyl chloride were prepared by high-temperature solution polycondensation in anisole at 155°C. Factors that influenced the reaction, such as monomer concentration, solvent, temperature, and time, were studied to determine the optimum conditions for the preparation of high molecular weight polymers. Compared with analogous unsubstituted aromatic polyamides, the N-phenylated polymers exhibited better solubility in chlorinated and amide solvents, reduced crystallinity, and lower glass transition temperatures (above 200°C). All polymers except the polyterephthalamide could be solvent-cast, as well as hot-pressed, into transparent flexible films.  相似文献   

19.
Various N-(hydroxyethyl)amino acid esters having a methyl substituent or phenyl group between amine and ester groups have been synthesized and their polycondensation behavior was investigated. These substituted amino acid esters gave amorphous polyamides which were soluble in alcohol. A model reaction between N-(hydroxyethyl)-amine and carboxylic acid ester was carried out in order to elucidate the role of hydroxyethyl group on the polycondensation. It was found that the amidation reaction took place rapidly at room temperature when the alkyl group of the carboxylic acid was small. N-(Hydroxyethyl) polyamides were obtained from N,N′-(bishydroxyethyl)-dicamines and dicarboxylic acid esters. The reaction mechanism of the room-temperature polycondensation reaction is discussed.  相似文献   

20.
A new triphenylamine‐containing diamine monomer, 4,4′‐diamino‐4″‐tert‐butyltriphenylamine, was successfully synthesized by the cesium fluoride‐mediated N,N‐diarylation of 4‐tert‐butylaniline with 4‐fluoronitrobenzene, followed by the reduction of the nitro group. The obtained diamine monomer was reacted with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to produce two series of novel triphenylamine‐based polyamides and polyimides with pendent tert‐butyl substituents. Most of the polymers were readily soluble in polar organic solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide (DMAc), and could be solution cast into tough and flexible polymer films. These polymers showed high glass transition temperatures between 282 and 320 °C, and they were fairly stable up to a temperature above 450 °C (for polyamides) or 500 °C (for polyimides). These polymers exhibited UV absorption maxima around 308 to 361 nm. The photoluminescence spectra of the polyamides in DMAc exhibited a peak emission wavelength in the blue at 421–433 nm. Cyclic voltammograms of polyamides and polyimides showed an oxidation wave at 1.0–1.1 V versus Ag/AgCl in an acetonitrile solution. All the polyamides and polyimides exhibited excellent reversibility of electrochromic characteristics by continuous several cyclic scans between 0.0 and 1.1–1.3 V, with a color change from the original pale yellowish neutral form to the green or blue oxidized forms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4579–4592, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号