首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bonding nature of the canonical molecular orbitals 2σg, 2σu and 3σg in the molecules N2,O2, F2 and the related analogous molecular orbitals in the molecules P2 and CO, is analysed using Weinhold's natural bond orbital set. When the canonical molecular orbitals can be well localized into natural bond orbitals, the covalent bond can be completely attributed to the bonding type natural bond orbitals. The decomposition of canonical molecular orbitals into the natural bond orbital basis then gives the weighted bond order as the component of the bonding portion in the canonical molecular orbital. The weighted bond order results match the photoelectron spectroscopy assignment quite satisfactorily.  相似文献   

2.
3.
Multireference configuration interaction wave functions with single and double excitations were calculated for the 1Σ+g ground state of the C2 molecule and the excited states of C+2 with symmetries 2Σ+g, 2Σ-u, 2Πu, and 2Πg. The corresponding σg, σu, πu, and πg valence Dyson orbitals were calculated. Most of the density due to the valence electrons is accounted for by three σg, one σu, and one degenerate pair of πu Dyson orbitals. Electron correlation plays an important role in the bond strength of C2 by increasing the occupation of the σg valence orbitals and decreasing the occupation of the σu and πu valence orbitals. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
《Chemical physics letters》1986,123(4):345-351
Studies in vertical-electronic, static-exchange approximation are reported of the outer-valence-shell (2πg−1, 2πu−1, 5σu−1, 6σg−1) partial-channel photoionization cross sections of CS2. The origins of strong features present in the calculated profiles, and in corresponding experimental cross sections, are attributed to the 6σu1) and 7σg1) orbitals of Mulliken on basis of Stieltjes orbital diagnostics.  相似文献   

5.
The early stages of the Coulomb explosion of a doubly ionized water molecule immersed in liquid water are investigated with time‐dependent density functional theory molecular dynamics (TD–DFT MD) simulations. Our aim is to verify that the double ionization of one target water molecule leads to the formation of atomic oxygen as a direct consequence of the Coulomb explosion of the molecule. To that end, we used TD–DFT MD simulations in which effective molecular orbitals are propagated in time. These molecular orbitals are constructed as a unitary transformation of maximally localized Wannier orbitals, and the ionization process was obtained by removing two electrons from the molecular orbitals with symmetry 1B1, 3A1, 1B2 and 2A1 in turn. We show that the doubly charged H2O2+ molecule explodes into its three atomic fragments in less than 4 fs, which leads to the formation of one isolated oxygen atom whatever the ionized molecular orbital. This process is followed by the ultrafast transfer of an electron to the ionized molecule in the first femtosecond. A faster dissociation pattern can be observed when the electrons are removed from the molecular orbitals of the innermost shell. A Bader analysis of the charges carried by the molecules during the dissociation trajectories is also reported.  相似文献   

6.
We introduce a pseudosymmetry analysis of molecular orbitals by means of the newly proposed irreducible representation measures. To do that we define first what we consider as molecular pseudosymmetry and the relationships of this concept with those of approximate symmetry and quasisymmetry. We develop a general algorithm to quantify the pseudosymmetry content of a given object within the framework of the finite group algebra. The obtained mathematical expressions are able to decompose molecular orbitals by means of the irreducible representations of any reference symmetry point group. The implementation and usefulness of the pseudosymmetry analysis of molecular orbitals is demonstrated in the study of σ and π orbitals in planar and nonplanar polycyclic aromatic hydrocarbons and the t2g and eg character of the d‐orbitals in the [FeH6]3? anion in its high spin state along the Bailar twist pathway. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The outer valence orbital momentum distributions of CO2 have been reinvestigated using a high momentum resolution (0.1 ao?1 fwhm) binary (e,2e) spectrometer operated at 1200 eV impact energy under the non-coplanar symmetric scattering condition. Generally good agreement of the measured momentum distributions with theoretical momentum distributions calculated using literature SCF double-zeta quality wavefunctions has been obtained for the 1πg, (1πu + 3σu) and 4σg orbitals. Although there is a reasonable agreement of the measured momentum distributions with earlier low momentum resolution (0.4 ao?1 fwhm) non-coplanar measurements at 400 eV impact energy reported by Cook and Brion, given the large differences in the momentum resolutions much more definitive results are obtained in the present study. In particular, the significantly higher momentum resolution clearly shows the mixed s-p character of the 4σg orbital. The present study also gives a much better agreement with theory in the case of the 4σg momentum distribution. For each orbital the calculated and where possible the experimentally determined spherically averaged momentum distributions are compared and contrasted with their respective two-dimensional momentum and position density maps. These together with three-dimensional surface plots at selected constant density values of the four outermost orbitals are used to provide a detailed comparison of momentum-space bonding and orbital properties with their more familiar position-space counterparts in the CO2 triatomic molecule. The calculated momentum-space density contour maps of the core orbitals exhibit rather large density oscillations and the feasibility of future experiments is discussed.  相似文献   

8.
Even systems in which strong electron correlation effects are present, such as the large near-degeneracy correlation in a dissociating electron pair bond exemplified by stretched H2, are represented in the Kohn–Sham (KS) model of non-interacting electrons by a determinantal wavefunction built from the KS molecular orbitals. As a contribution to the discussion on the status and meaning of the KS orbitals we investigate, for the prototype system of H2 at large bond distance, and also for a one-dimensional molecular model, how the electron correlation effects show up in the shape of the KS σ g orbital. KS orbitals φHL and φFCI obtained from the correlated Heitler-London and full configuration interaction wavefunctions are compared to the orbital φLCAO, the traditional linear combination of atomic orbitals (LCAO) form of the (approximate) Hartree-Fock orbital. Electron correlation manifests itself in an essentially non-LCAO structure of the KS orbitals φHL and φFCI around the bond midpoint, which shows up particularly clearly in the Laplacian of the KS orbital. There are corresponding features in the kinetic energy density t s of the KS system (a well around the bond midpoint) and in the one-electron KS potential v s (a peak). The KS features are lacking in the Hartree-Fock orbital, in a minimal LCAO approximation as well as in the exact one. Received: 11 December 1996 / Accepted: 10 January 1997  相似文献   

9.
The homonuclear diatomic molecules are the simplest systems having both the σ framework and the lone pair orbitals na and b for investigating their through space and through bond interaction. The striking orbital energy order ng~ na+ nb > nn ~ na - nb has been accounted for by the through bond interaction. However, when the p-content in the lone pair orbitals na and nb decreases, one may have the reverse orbital energy order: ng < ng. A reverse orbital energy order has been found in F2 and Cl2, whose na and nb are almost pure s-type atomic orbitals. The reverse order also occurs in molecule N2 when the internuclear distance is larger man 1.5 Å. It is also found that the detail through space and through bond interaction and the eventual orbital energy order for ng and nu can be accounted for by the Fock operator within the localized molecular orbital space.  相似文献   

10.
A series of saturated XnHm (X being either C or Si) molecules is studied using the MINDO /3 and MNDO quantum-chemistry procedures. We find that the proximity of H atoms tends to shorten X? X bonds, and that this effect is (especially for MINDO /3) much larger than a similar trend in experimental values. The connection between this and hybridization values calculated from localized orbitals is investigated. It is found that the hybridization model works well for X? H bonds, whereas for X? X bonds non-σ-bond effects also play a significant role. It is shown that the changes in electronic structure may be directly connected to differences in X and H atomic levels, so that similar bond length differences may be expected in other molecular orbital calculations.  相似文献   

11.
A one‐dimensional probability density function, analogous to the atomic radial density for the hydrogen atom, r2Rnl(r), is defined for an arbitrary three‐dimensional density. It is obtained numerically by taking the derivative of a cumulative probability distribution with respect to the cubic root of the volume enclosed by each in a series of isosurfaces. Each point in the function is associated with a unique isosurface, and the isosurface associated with the maximum of the defined function represents the most probable isosurface with respect to the putative radius. This function therefore provides an objective selection criterion for a single isosurface to represent a three‐dimensional density. This technique is applied to set of canonical molecular orbitals. The selected threshold value varies from orbital to orbital, but the enclosed probability falls in the range of 20% to 55% for the reported orbitals. In all cases, the enclosed probability is much smaller than the common choices found in the literature. The concomitant smaller volume often makes possible a more localized interpretation and helps to clarify the conventional delocalized interpretation of molecular orbitals. For example, the isosurface plots selected by this method distinguish the formally bonding orbital in He2 from the true bonding orbital in H2. Examples from N2, F2, HF, H2O, C2H6, and Ni(CO)4 are also presented. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 310–321, 2000  相似文献   

12.
The He (Iα) photoelectron spectra of the four unsaturated oxides 3,4-dihydropyran ( 6 ), γ-pyran ( 7 ), 2, 3-dihydro-1, 4-dioxin ( 9 ) and 1, 4-dioxin ( 10 ) are reported and analysed. Band assignments are based on ab-initio calculations, using the STO-3G basis set. The proposed orbital sequences (with reference to the coordinate systems given in Table 1) are, for the top three orbitals: 6 , π, nσ, nπ; 7 , 3b1(π), 1a2(π), 11a1(σ); 9 , 11b(π), 12a(σ), 11a(π); 10 , 2b3u(π), 1b1g(π), 6ag(σ). Finally the (almost) localized π-orbitals have been computed by the Foster-Boys localization procedure.  相似文献   

13.
The electronic structures of the tetrahedral molecule ions MnO 4 2– and CrO 4 3– have been investigated within an unrestricted CNDO-MO approximation [Theoret. Chim. Acta (Berl.)20, 317 (1971)]. Calculations assuming the unpaired electron occupies the 3a 1, 2e, and 4t2 molecular orbitals indicate that the 3a 1 and2e orbitals have similar orbital energies and that the 4t 2 orbital is at a higher energy. The experimentally indicated2e orbital for the unpaired electron is obtained with expanded O1– type atomic orbitals for oxygen and valence metal orbitals of the expanded 3d and plus one ion 4p types. The metal 4s orbitals must be held to the neutral atom type. The optimum valence orbitals above with a slightly contracted 4s type metal orbitals yield the minimum total energy and places the unpaired electron in the 3a 1 orbital. Since the contracted 4s metal orbital produces results that are not in agreement with experimental data, the method used apparently does not adequately take into account the increased electron-electron repulsions that contracted 4s orbitals produce.  相似文献   

14.
The ionization energies JJ, of 1,6;8,13-alkanediylidene-[14]annulenes ( 2 to 5 ) and of dicyclohepta[cd,gh]pentalene ( 1 ) have been determined by photoelectron spectroscopy, using HeI radiation. The data are interpreted in terms of Koopmans' theorem (JJ = ?εJ) on the basis of correlation diagrams and with the help of simple molecular orbital models. If the bridge is an ethane-, propane- or butane-diylidene group, the π-orbital sequence, in descending order of orbital energies, is (in C2v): b1, b2, a2, a1. The sequence is due to a complicated and not uniquely definable interplay of inductive, conjugative and homoconjugative effects. A detailed analysis of these effects suggests that the effective angle of twist between two consecutive basis-AOs 2pμ, 2pν of the peripheral π-system should be smaller than the twist angles θμν determined by X-ray analysis, i.e. that the pi;-ribbon adjusts elastically and is no longer locally orthogonal to the σ-frame. In the non-alternant hydrocarbon 1 of symmetry D2h, the sequence is 2b2g, 3b1u, 2b3g, 1au, 2b1u. The sequence 3b1u above 2b3g, i.e. the reverse of b2 above a1 in the bridged [14]annulenes, is explained as being due to the interaction of the semilocalized perimeter orbitals b1u and b3g with the bonding (π(B1u))and antibonding (π*(B3g)) orbital of the central double bond. In 2 the replacement of the two latter orbitals by the Walsh-orbitals of the cyclopropane moiety leads to the sequence b1, b2, a1, a2. From the data observed for 1 to 5 and for 1,6-methano-[10]annulene [11], a crude estimate for the orbital energies of the hypothetical all-cis D10h-[10]- and D14h-[14]annulenes can be derived.  相似文献   

15.
《中国化学》2017,35(9):1452-1458
Both the bonding mode and geometry can serve as the chemical bonding nature of central cation, which is essentially determined by the atomic orbital‐hybridization. In this work, we focus on the possible chemical bonding scheme of central cations on the basis of a quantitative analysis of electron domain of an atom. Starting from the hybridization of outer atomic orbitals that are occupied by valence electrons, we studied the possible orbital hybridization scheme of atoms in the periodic table and the corresponding coordination number as well as possible molecular geometries. According to distinct hybrid orbital sets, the chemical bonding of central cations can be classified into three typical types, resulting in the cations with a variety of coordination numbers ranging from 2 to 16. Owing to different hybridization modes, the highest coordination number of cations in IA and IIA groups is larger than that in IB‐VIIIB groups, and the coordination number of lanthanide elements is most abundant. We also selected NaNO3 , Fe(NO3 )3•9H2O , Zn(NO3 )2•6H2O , Y(NO3 )3•3H2O , and La(NO3 )3•6H2O as examples to confirm the direct relationship between chemical bonding characteristics and orbital hybrid set by IR spectra. The present study opens the door to reveal the chemical bonding nature of atoms on the basis of hybridization and will provide theoretical guides in structural design at an atomic level.  相似文献   

16.
Valence-shell binding energy spectra and momentum distributions of CS2 have been measured using non-coplanar symmetric binary (e,2e) spectroscopy. The present measurements are compared with previously published binding energy spectra calculated using the many body 2ph-TDA Green's function (GF) method and the symmetry-adapted cluster configuration-interaction (SAC CI) method. The measured and the calculated binding energy spectra both show extensive population splittings particularly above 20 eV, confirming a significant breakdown of independent particle ionization picture. A relatively strong-outer valence many-body state at 17.0 eV is shown to be satellite of the (2π0)?1 state, in accord with earlier conclusions of photoelectron studies. Momentum distributions measured at several carefully chosen binding energies are compared with the corresponding molecular orbital momentum distributions calculated using small and extended gaussian basis sets. The good qualitative agreement between momentum distributions measured in the inner-valence region wth theoretical 4σm and 5σg orbital momentum distributions confirms the qualitative predictions of satellite parentages by GF and SAC CI calculations. Momentum and position density contour maps of individual orbitals are used to interpret the shapes and atomic characters of the experimental momentum distributions. Momentum densities of the valence orbitals of CS2 are compared with those of the respective valence isoelectronic species CO2  相似文献   

17.
18.
The physical process of the umbrella inversion of the nitrogen trifluoride molecule has been studied invoking the formalisms of the density functional theory, the frontier orbital theory, and the molecular orbital theory. An intuitive structure and dynamics of evolution of the transition state for the event of inversion is suggested. The physical process of dynamic evolution of the molecular conformations between the equilibrium (C3v) shape and the planar (D3h) transition state has been followed by a number of molecular orbital and density functional parameters like the total energy, the eigenvalues of the frontier orbitals, the highest occupied molecular orbital and lowest unoccupied molecular orbital, the (HOMO–LUMO) gap, the global hardness and softness, and the chemical potential. The molecular conformations are generated by deforming the ∠FNF angle through steps of 2° from its equilibrium value, and the cycle is continued till the planar transition state is reached, and the geometry of each conformation is optimized with respect to the length of the N? F bond. The geometry optimization demonstrates that the structural evolution entails an associated slow decrease in the length of the N? F bond. The dipole moment at the equilibrium form is small and that at the transition state is zero and shows a strange behavior with the evolution of conformations. As the molecular structure begins to distort from its equilibrium shape by opening of the ∠FNF angle, the dipole moment starts increasing very sharply, and the trend continues very near to the transition state but abruptly vanishes at the transition state. A rationale of the strange variation of dipole moment as a function of evolution of conformations could be obtained in terms of quantum mechanical hybridization of the lone pair on the N atom. The pattern of charge density reorganization as a function of geometry evolution is a continuous depletion of charge from the F center and piling up of charge on the N center. The continuous shortening of bond length and the pattern of variation of net charge densities on atomic sites with evolution of molecular conformations predicts that the bond moment would decrease continuously. The quantum mechanical hybridization of the lone pair of the central N atom shows that the percentage of s character of the lone‐pair hybrid on the N atom decreases at a very accelerated rate, and the lone pair at the transition state is accommodated in a pure p orbital. The result of the continued destruction of asymmetry of charge distribution in the lone pair on the central N atom due to the elimination of contribution of the s orbital with evolution of molecular conformations is the sharp decrease in lone‐pair moment. The decrease in bond moment is overcompensated by the sharp fall of its offsetting component, the lone‐pair moment, resulting in a net gain in dipole moment with the evolution of molecular geometry. Since the offsetting component decreases very sharply, the net effect is a sharp rise of dipole moment with the evolution of molecular conformations just before the transition state. The lone‐pair moment is zero by virtue of the symmetry of the pure p orbital, the lone pair of the central atom in the transition state, and the sum of the bond moments is zero by symmetry of the geometry. The barrier height is quite high at ~65.45 kcal/mol, which is close to values computed through more sophisticated methods. It is argued that an earlier suggestion regarding the development of high barrier value of NF3 system seems to be misleading and confronting with the conclusions of the density functional theory. An analysis and a comparative study of the physical components of the one‐ and two‐center energy terms reveals that the pattern of the charge density reorganization has the principal role in deciding the origin and the magnitude of barrier of inversion of the molecule and the barrier originates not from a particular energetic effect localized in a particular region of the molecule, rather the barrier originates from a subtle interplay of one‐ and two‐center components of the total energy. The decomposed energy components show that the F?F nonbonded interaction and N? F bonded interaction favor the formation of transition state, while the one‐center energy terms prohibit the formation of the transition state. The barrier principally develops from the one‐center energy components. The profile of the HOMO is isomorphic and that of the LUMO is homomorphic with the potential energy curve for the physical process of the event of umbrella inversion of the molecule. The variation of the HOMO–LUMO gap, ?ε, the global hardness, η, and the softness, S, as a function of the reaction coordinates of angular deformation of NF3 molecule are quite consistent with the predictions of the molecular orbital and the density functional theories in connection with the deformation of molecular geometry. The profiles of ?ε, η, and S, as a function of reaction coordinates, mimic the potential energy curve of the molecule. The eigenvalues of the frontier orbitals, and the ?ε, η, S parameters are found to be equally effective theoretical parameters, like the total energy, to monitor the physical process of the inversion of pyramidal molecules. The nature of the variation of the global hardness parameter between the equilibrium shape and the transition state form for the inversion is in accordance with the principle of maximum hardness (PMH). © 2002 John Wiley & Sons, Inc. Int J Quantum Chem, 2002  相似文献   

19.
《Chemical physics》1987,115(3):405-421
A series of MC SCF calculations have been carried out on C2, N2, O2, and F2 with the goal of obtaining compact wavefunctions which recover a significant fraction of the electron correlation effects important for bond dissociation. The active orbital space is varied in size, with the largest spaces including the molecular orbitals derived from 2s, 2p, 3s, 3p and 4p atomic orbitals. Several basis sets ranging in size from 5s3p to 5s4p2d1f are investigated to determine the flexibility in the basis set needed with various choices of the active orbital space. The best extended-valence MC SCF (EVMC) dissociation energies are 0.2–0.5 eV less than the experimental values, indicating that further enlargement of the active orbital space is necessary to achieve 0.1 eV accuracy in the computed dissociation energies. The EVMC calculations reveal that, for the calculation of the dissociation energies, inclusion of non-valence orbitals is much more important for O2 and F2 than for C2 and N2. The EVMC results are compared with the predictions of full fourth-order perturbation theory, coupled cluster theory, and with the best available CI calculations.  相似文献   

20.
An efficient and general method is derived to calculate population localised molecular orbitals (LMO's) from a given SCF eigenvector matrix, by reduction to an eigenvalue problem. Applications to both localised molecules (NH3 and C2H2) and delocalised ones (B2H6, C6H6 and butadiene) are discussed in some detail. It is shown that unequal occupation of atomic energy levels leads to non-orthogonal LMO's. The consequences of non-orthogonal atomic hybrid orbitals are discussed, formulas for their overlap in terms of atomic occupation numbers are derived and it is shown that the occupation numbers are connected to LMO atomic orbital coefficients by various sum rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号