首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The mass spectra of 30 sulfinamide derivatives (RSONHR', R' alkyl or p-XC6H4) are reported. Most of the spectra had peaks attributable to thermal decomposition products. For some compounds these were identified by pyrolysis under similar conditions to be: RSO2NHR', RSO2SR, RSSR and NH2R' (in all kinds of sulfinyl amides); RSNHR' (in the case of arylsulfinyl arylamides); RSO2C6H4NH2, RSOC6H4NH2 and RSC6H4NH2 (in the case of arylsulfinyl arylamides of the type of X = H) The mass spectra of the three thermally stable compounds showed that there are several kinds of common fragment ions. The mass spectra of the thermally labile compounds had two groups of ions; (i) characteristic fragment ions of the intact molecules and (ii) the molecular ions of the thermal decomposition products. It was concluded that the sulfinamides give the following ions after electron impact: [M]+, [M ? R]+, [M ? R + H]+, [M ? SO]+, [RS]+, [NHR']+, [NHR' + H]+, [RSO]+, [RSO + H]+, [R]+, [R + H]+, [R']+ and [M ? OH]+, and that the thermal decomposition products give the following ions: [RSO2SR]+, [RSSR]+, [M ? O]+, [M + O]+ and [RSOC6H4NH2]+.  相似文献   

2.
Summary By means of the filament heated in-beam method at 280–450° C, the series of sodium alkylsulphonates (RSO3Na, where R=C2H5 to n-C12H25) give very simple mass spectra: Na+, [RSO3Na2]+, which is the base peak except for R=n-C4H9, [(RSO3)2Na3]+ and, in most cases, [(RSO3)3Na4]+. Fragmentations other than these three or four peaks are observed only in the case of n-heptylsulphonate. The proposed method of analysis for simple alkylsulphonic acids is applicable to ordinary electron-impact mass spectrometers.
Analyse von Natrium-alkylsulfonaten durch Elektronenstoß-Massenspektrometrie mit Probenerhitzung im Elektronenstrahl
Zusammenfassung Mit Hilfe dieser Methode (280–450° C) erhält man für Natriumalkylsulfonate (RSO3Na mit R=C2H5 bis n-C12H25) sehr einfache Massenspektren: Na+, [RSO3Na2]+ (Basispeak mit Ausnahme von R=n-C4H9), [(RSO3)2Na3]+ und in den meisten Fällen [(RSO3)3Na4]+. Andere Fragmentierungen als diese 3 oder 4 Peaks wurden nur bei n-Heptylsulfonat beobachtet. Dieses Verfahren zur Analyse einfacher Alkylsulfonsäuren ist für übliche Elektronenstoß-Massenspektrometer verwendbar.
  相似文献   

3.
[M ? H+]? ions of isoxazole (la), 3-methylisoxazole (1b), 5-methylisoxazole (1c), 5-phenylisoxazole (1d) and benzoylacetonitrile (2a) are generated using NICI/OH? or NICI/NH2? techniques. Their fragmentation pathways are rationalized on the basis of collision-induced dissociation and mass-analysed ion kinetic energy spectra and by deuterium labelling studies. 5-Substituted isoxazoles 1c and 1d, after selective deprotonation at position 3, mainly undergo N ? O bond cleavage to the stable α-cyanoenolate NC ? CH ? CR ? O? (R = Me, Ph) that fragments by loss of R? CN, or R? H, or H2O. The same α-cyanoenolate anion (R = Ph) is obtained from 2a with OH?, or NH2?, confirming the structure assigned to the [M ? H+]? ion of 1d, On the contrary, 1b is deprotonated mainly at position 5 leading, via N? O and C(3)? C(4) bond cleavages, to H? C ≡ C? O ? and CH3CN. Isoxazole (1a) undergoes deprotonation at either position and subsequent fragmentations. Deuterium labelling revealed an extensive exchange between the hydrogen atoms in the ortho position of the phenyl group and the deuterium atom in the α-cyanenolate NC ? CD = CPh ? O?.  相似文献   

4.
Pseudoelement Compounds. IV. Modification of the Ions Sulfite [SO2Y]2?, Sulfate [SO4?nYn]2?, and Sulfonate [RSO2Y]? by Introducing Pseudochalcogen Groups NCN and C(CN)2 . Described is the synthesis of pseudochalcogen modified sulfites M2[SOY2], sulfates M2[SO4?nYn] (Y = NCN), and arylsulfonates M[RSO2Y] (Y = NCN, C(CN)2). The 13C-NMR and IR spectra of the new compounds are discussed.  相似文献   

5.
Under positive ion chemical ionization conditions with ammonla at relatively low pressure, aromatic nitro compounds do not form [M + H]+ ions but often form ionic clusters [M + NH4]+ and [M + N2H7]+. Nitrobenzene forms a cluster [2M + NH4]+ and aniline, formed by nucleophilic substitution, leads to a cluster [anilinium ion + nitrobenzene]+. The dinitrobenzenes form [M + NH4]+ clusters and show evidence of nitroaniline formation and clustering. 1,3,5-Trinitrobenzene gives little indication of clustering or of substitution. The six isomers of trinitrotoluene appear to be stabilized by the methyl group and form clusters up to [M + N3H10]+. Nucleophilic substitution leads to dinitrotoluidines, which also form clusters with ammonium ions.  相似文献   

6.
The kinetics of formation of [C3H5]+[M ? CH3]+, [C3H4]+·[M ? CH4]+· and [C2H4]+·[M ? C2H4]+· from but-1-ene, cis- and trans-but-2-ene, 2-methylpropene, cyclobutane and methylcyclopropance following field ionisation have been determined as a function of time 20 (or 30) picoseconds to 1 nanosecond and at two points in the microsecond time-frame. The results are consistent with the supposition that at the shortest accessible times (20 to 30 picoseconds) the structure of the [C4H8]+· molecular ion qualitatively resembles that of its neutral precursor, but suggest that prior to decomposition within nanoseconds the various molecular ions (excepting cyclobutane where the processes are slower) attain a common structure or mixture of structures. Reaction pathways of the presumed known ion structures are delineated from the nature of decompostion at the shortest times.  相似文献   

7.
A collisional induced dissociation study of 1,3,5-trinitro-1,3,5 triazacyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) was carried out using mass analyzed kinetic energy spectrometry. High resolution mass spectra and mass analyzed ion kinetic energy/collisional induced dissociation spectra of RDX and HMX were recorded in the electron impact, chemical ionization and negative ion chemical ionization modes. Fragmentation pathways of the compounds investigated were determined in all three modes of ionization. It was found that a major part of the fragment ions in RDX and HMX originate from formation of the aduct ions [M+NO]+ and [M+NO2]+ in electron impact and chemical ionization, and from [M+NO]? and [M+NO2]? in negative chemical ionization, followed by dissociation.  相似文献   

8.
The mass spectra of a series of β-ketosilanes, p-Y? C6H4Me2SiCH2C(O)Me and their isomeric silyl enol ethers, p-Y? C6H4Me2SiOC(CH3)?CH2, where Y = H, Me, MeO, Cl, F and CF3, have been recorded. The fragmentation patterns for the β-ketosilanes are very similar to those of their silyl enol ether counterparts. The seven major primary fragment ions are [M? Me·]+, [M? C6H4Y·]+, [M? Me2SiO]+˙, [M? C3H4]+˙, [M? HC?CCF3]+˙, [Me2SiOH]+˙ and [C3H6O]+˙ Apparently, upon electron bombardment the β-ketosilanes must undergo rearrangement to an ion structure very similar to that of the ionized silyl enol ethers followed by unimolecular ion decompositions. Substitutions on the benzene ring show a significant effect on the formation of the ions [M? Me2SiO]+˙ and [Me2SiOH]+˙, electron donating groups favoring the former and electron withdrawing groups favoring the latter. The mass spectral fragmentation pathways were identified by observing metastable peaks, metastable ion mass spectra and ion kinetic energy spectra.  相似文献   

9.
The [CH3O?CHCH3]+ ions observed in the mass spectra of ethers of formula CH3OCH (CH3)R(R = H or alkyl) undergo two rearrangement fragmentation reactions to form [C2H5]+ and [CH2OH]+. The scope of the rearrangements has been investigated and it is shown that enlargement of the alkyl group on either side of the ether linkage leads to alternative fragmentation routes. From a study of metastable intensities it is concluded that the fragmentations probably occur directly from the [CH3O?CHCH3]+ structure through four centred rearrangements rather than through the intermediacy of the [C2H5O?CH2]+ ion.  相似文献   

10.
The mass spectra of the methyl-, trideuteromethyl-, ethyl- and pentadeuteroethylethers of 2,2′-bis-trimethylsilylbenzhydrol are reported. The most significant ions arise from the [M – CH3]+ ion, formed by loss of a methyl radical from one of the trimethylsilyl groups. After ring formation by interaction of the siliconium ion centre with an aromatic nucleus, the ion loses (CH3)3Si? OR (R = CH3, C2H5, CD3 and C2D5), giving ion m/e 223. The fragment (CH3)3Si? OCH3 is also eliminated in the four ethers investigated from the ion [M – R]+. Attack of the siliconium ion. Indications are found for a transannular hydrogen/deuterium rearrangement and a transannular elimination reaction. The intensity of some peaks in the spectra are discussed in relation to group R.  相似文献   

11.
The mechanism of elimination of ROH (R = H or CH3) from the ammonium adduct ion, [M+NH4]+, of 1-adamantanol and its methyl ether is examined by using linked-scan metastable ion spectra and by measuring the dependence of the peak intensity ratio [M+NH4]+/[M+NH4? ROH]+ on ammonia pressure. For 1-adamantanol both SNi and SN1 reactions are suggested in metastable ion decomposition, while only the SN1 mechanism is operative in the ion source. For 1-adamantanol methyl ether the SN1 reaction predominates both in metastable ion decomposition and in the ion source reaction.  相似文献   

12.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

13.
The reaction of N-nitro-O-(4-nitrophenyl)hydroxylamine (1) with conc. H2SO4 affords 4-nitropyrocatechol and that with conc. sulfonic acids (RSO3H where R = Me, CF3) affords 2-hydroxy-5-nitrophenyl-R-sulfonates in yields of 80?C85%. These reactions are assumed to proceed through an intermediate (phenoxy)oxodiazonium ion [NO2C6H4O-N=N=O]+, which eliminates the N2O molecule to form the aryloxenium ion [NO2C6H4O]+. The latter reacts with acid anions at the ortho-carbon atom of the phenyl ring. The thermodynamical parameters of the elementary reactions resulting in the formation of the (phenoxy)oxodiazonium ion [NO2C6H4O-N=N=O]+ and aryloxenium ion [NO2C6H4O]+ were calculated in the B3LYP/6?311+G(d) study of the combined molecular system (nitrohydroxylamine 1 + [H3SO4]+). The reaction of nitrohydroxylamine 1 with aqueous solutions of strong acids (??70% H2SO4, CF3SO3H) affords mainly 4-nitrophenol. It appears that the mechanism of this reaction does not involve the formation of the aryloxenium ion.  相似文献   

14.
The ionization potentials for the stereoisomers of trans-fused 1,2-dimethyl- and 1-ethyl-2-methyl-4-R-decahydroquinol-4-ols (R?C?CH, CH?CH2 or C2H5) and the appearance potentials for the [M–CH3]+ and [M–C2H5]+ ions (loss of 2-CH3 and 4-C2H5 groups potential, respectively) were measured by using the electron impact method. The ionization and appearance potential for [M–CH3]+ are always lower for the isomers with the axial 2-CH3 group. For the C-2 epimers, the difference between the appearance potentials for the [M–CH3]+ ion values is likely to be equal to the enthalpy differences between the ground states of the epimers and the dissociation energy differences between the axial and equatorial C2–CH3 bonds. The appearance potentials for [M–C2H5]+ for the C-4 epimers possessing the 4-C2H5 group were very similar. At the same time, the appearance potentials for the [M–CH3]+ ions were lower for less stable epimers which had an axial 4-C2H5 group.  相似文献   

15.
The decomposing molecular cations derived from (substituted) 2-nitrothiobenzamides fragment by complex rearrangement reactions. When the alkyl substituents (R) attached to N are methyl, the major fragmentations are [M]+˙ → [M? SO] and [M? SO] → [(M? SO)–R˙]+. This remains a basic pathway when R ? Et, but other rearrangements are also observed. For example, when R=Et, additional competitive processes are [M] → [M? HO˙]+ and [M] → [M? C2H4O]+˙.  相似文献   

16.
Mass-analysed ion kinetic energy spectrometry (MIKES) with collision-induced dissociation (CID) has been used to study the fragmentation processes of a series of deuterated 2,4,6-trinitrotoluene (TNT) and deuterated 2,4,6-trinitrobenzylchloride (TNTCI) derivatives. Typical fragment ions observed in both groups were due to loss of OR′ (R′ = H or D) and NO. In TNT, additional fragment ibns are due to the loss of R2′O and 3NO2, whilst in TNTCI fragment ions are formed by the loss of OCI and R2′OCI. The TNTCI derivatives did not produce molecular ions. In chemical ionization (Cl) of both groups. MH+ ions were observed, with [M – OR′]+ fragments in TNT and [M – OCI]+ fragments in TNTCI. In negative chemical ionization (NCI) TNT derivatives produced M?′, [M–R′]?, [M–OR′]? and [M–NO]? ions, while TNTCI derivatives produced [M–R]?, [M–Cl]? and [M – NO2]? fragment ions without a molecular ion.  相似文献   

17.
From a collisional activation spectral study it has been found that certain triterpene alcohols with an ursane or oleanane skeleton undergo oxidation to the corresponding ketones under chemical ionization (NH3) conditions giving rise to abundant [M + NH4 ? 2]+ ions. Mass-analysed ion kinetic energy and B2/E scan results indicate that both [M + NH4]+ and [M + N2H7 ? 2]+ ions contribute to the formation of the [M + NH4 ? 2]+ ion.  相似文献   

18.
Chemical ionization mass spectra of several ethers obtained with He/(CH3)4Si mixtures as the reagent gases contain abundant [M + 73]+ adduct ions which identify the relative molecular mass. For the di-n-alkyl ethers, these [M + 73]+ ions are formed by sample ion/sample molecule reactions of the fragment ions, [M + 73 ? CnH2n]+ and [M + 73 ? 2CnH2n]+. Small amounts of [M + H]+ ions are also formed, predominantly by proton transfer reactions of the [M + 73 ? 2CnH2n]+ or [(CH3)3SiOH2]+ ions with the ethers. The di-s-alkyl ethers give no [M + 73] + ions, but do give [M + H]+ ions, which allow the determination of the relative molecular mass. These [M + H]+ ions result primarily from proton transfer reactions from the dominant fragment ion, [(CH3)3SiOH2]+ with the ether. Methyl phenyl ether gives only [M + 73]+ adduct ions, by a bimolecular addition of the trimethylsilyl ion to the ether, not by the two-step process found for the di-n-alkyl ethers. Ethyl phenyl ether gives [M + 73]+ by both the two-step process and the bimolecular addition. Although the mass spectra of the alkyl etherr are temperature-dependent, the sensitivities of the di-alkyl ethers and ethyl phenyl ether are independent of temperature. However, the sensitivity for methyl phenyl ether decreases significantly with increasing temperature.  相似文献   

19.
The ion [C13H9]+ (m/e 165) is produced from the molecular ion of 3,5-diphenylisoxazole by the process [M ? CO ? H2CN·] and [M ? CO ? HCN ? H·] and from that of 3,5-diphenyl-pyrazole by the eliminations [M ? N2H· ? C2H2]. These processes have been studied by 2H and 13C labelling. A correlation between photochemical, thermal and electron-impact decompostions is noted for 3,5-diphenylisoxazole.  相似文献   

20.
The formation of the rearrangement ions [R? O? Si(CH3)2]+ from [M – CH3]+ ions of the epimeric 5-methylcyclohexane-cis -1,3-diol-TMS ethers is independent of the 5-Me configuration, in contrast to the sterochemical effect of the 5-Me group, in the eliminations from [M]+· of related derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号