共查询到17条相似文献,搜索用时 15 毫秒
1.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. IX. Chromium Carbonyl Complexes of Silylated and Alkylated Triphosphanes . To investigate the influence of the substituents on the formation of complex compounds of triphosphanes several derivatives were synthesized which differ in the number and position of the Me3Si and tBu groups at the primary P atoms and which bear H, Me3Si, Me of Ph groups at the secondary P atom. These are [(Me3Si)2P]2PH 1 , [(Me3Si)2P]2P(SiMe3) 2 , (MeSi)(tBu)P? P(H)? P(SiMe3)2 3 , (tBu)2P? P(SiMe3)? P(tBu)(SiMe3) 4 , [(tBu)2P]2PH 5 , [(tBu)2P]2P(SiMe3) 6 , [(Me3Si)2P]2PMe 7 , [(Me3Si)2P]2P(Ph) 8 . When reacting these compounds with Cr(CO)5THF 9 the following groups of products are obtained: Compounds 1, 3, 5, 7 and 8 at first yield products of group A and react on to B; however this second step is not important for 7 and even less for 8. Compounds 2, 4 and 6 bearing a Me3Si group at the secondary P atom yield C, but their reactivity is strongly reduced and they tend to give byproducts. Using a molar ratio of triphosphane: Cr(CO),THF 9 = 1 : 2 A forms also D in addition to B . Further reactions may occur from A and B , e. g., at 50°C 1 b ( B ) decomposes to 1 and lc (E). With Cr(CO),NBD the compounds 1, 5, 7 and 8 form products of groups E and F. At ?18°C 7 forms 7c (E) which rearranges at 75°C to 7d (F). The compounds are characterized by 31P and 1H NMR spectra, mass spectra and elemental analysis. 相似文献
2.
Silylphosphanes with an Admantane Skeleton Formed in Reactions of P4 and Na/K with Dichlorsilanes, and their 31P NMR Spectra The reactions of P4 and Na/K (molar ratio 1:3) with EtMeSiCl2, Et2SiCl2, and PhMeSiCl2 give access to the silylphosphanes with adamantane structure (EtMeSi)6P4 1 , (Et2Si)6P4 2 , and (PhMeSi)6P4 3 . Likewise, the Si-functional adamantanes [Vinyl(Me)Si]6P4 4 , (MeHSi)6P4 5 , and (MeHSi)(Et2Si)6P4 6 can be obtained by the reaction of alkali phosphides with Vinyl(Me)SiCl2, MeHSiCl2, or Et2SiCl2/MeHSiCl2 (molar ratio 5:1), respectively. The compounds form colorless crystals ( 3 crystallies reluctantly). The reactions of the alkali phosphides with t-Bu2SiCl2 and Ph2SiCl2 do not lead to the corresponding adamantanes; t-Bu2SiCl2 doesn't react product mixture of the more reactive Ph2SiCl2 traces of (Ph2Si)6P4 could not be detected. The 31P-NMR-spectra of the compounds 1–6 are interpreted. 相似文献
3.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VIII. Concerning the Different Tendencies of Silylated and Alkylated Phosphanes and Diphosphanes to Form Chromium Carbonyl Complexes The influence of the substituents Me3Si tBu and Me in phosphanes and diphosphanes on the formation of complex compounds with Cr(CO)5THF is investigated. tBu(Me3Si)P? P(SiMe3)2 1 and (tBu)2P? P(SiMe3)2 2, resp., react with Cr(CO)5THF 4 at ?18°C by coordinating Cr(CO)5 to the P(SiMe3)2 group to give tBu(Me3Si)P? PIV(SiMe3), · Cr(CO)5 1 a, tBu(Me3Si)PIV? PIV(SiMe3)2 · Cr(CO)4 1b and (tBu)2P? PIV(SiMe3)2 · Cr(CO)5 2a . In the reaction of 1 with 4 using a molar ratio of 1:2 at first 1 a is formed which reacts on to yield completely 1 b. In a mixture of the dissolved compounds (Me3Si)3P 5, (tBu)3P 6 and (tBu)3P? P(SiMe3)2 2 only 5 and 6 react with Cr(CO)5THF yielding (Me3Si)3P · Cr(CO)5 and (tBu)3P · Cr(CO)5, but 2 does not yet react. In a solution of (Me3Si)3P 5, P2Me4 7 and (Me3Si)2P? PMe2 3 only 5 and 7 react with Cr(CO)5THF (0.25 to 1.5 equivalents with respect to 3) to give (Me3Si)3P · Cr(CO)5, P2Me4 · Cr(CO)5 and P2Me4 · 2Cr(CO)5. The formation of complexes with Cr(CO)5THF of the phosphanes 5 and 6 is clearly favoured as compared to the silylated diphosphanes 2 and 3 (not to P2Me4); the PR2 groups (R = tBu, Me in 2 or 3 ) don't have a strong influence. 相似文献
4.
Formation of Cyclic Silylphosphanes. Reaction of Li-Phosphides with R2SiCl2 (R? Me, Et, t-Bu) The reaction of Me2SiCl2 with Li-phosphides (mixture of LiPH2, Li2PH) leads to the formation of Me2Si(PH2)Cl 1 , Me2Si(PH2)2 2 , H2P? SiMe2? PH? SiMe2Cl 3 , (H2P? SiMe2)2PH 4 , (HP? SiMe2)3 6 , 5 , 7 , 8 , 9 , 10 , 40 . Excess of phosphides in Et2O – as well as excess of LiPH2 – favourably forms 10 . Li2PH (virtually free of Li3P and LiPH2) is obtained by reaction of LiPH2 · DME with LiBu; Li3P by reaction of PH3 with LiBu in toluene. Isomerization by Li/H migration determines the course of reaction of the PH-bearing compounds with Li-phosphides. With Me2SiCl2 Li3P mainly generates compound 10 . The reaction of the Li-phosphides with Et2SiCl2 mainly leads to (HP? SiEt2)3 18 and (HP? SiEt2)2 17 as well as to Et2Si(PH2)Cl 11 , Et2Si(PH2)2 12 , (ClEt2Si)2PH 13 , H2P? SiEt2? PH? SiEt2Cl 14 , (H2P? SiEt2)2PH 15 and 16 . In the reaction with LiPH2 · DME the same compounds are obtained and isomerization by Li/H migration (formation of PH3) already begins at ?70°C. In toluene ClEt2Si? P(SiEt2)2P? SiEt2Cl is additionally formed. Derivatives of 9, 10, 40 are not observed. The reaction of (t-Bu)2SiCl2 with LiPH2 leads to HP[Si(t-Bu)2]2PH 20 (yield 76%) and formation of PH3, the reaction with Li2PH to 20 (54%) besides HP[Si(t-Bu)2]2PLi 21 . 相似文献
5.
6.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VII Carbonyl Complexes of the Heptaphosphane(3) iPr2(Me3Si)P7 From the reaction of iPr2(Me3Si)P7 1 with one equivalent of Cr(CO)5THF the yellow products iPr2(H)P7[Cr(CO)5] 2 and iPr2(Me3Si)P7[Cr(CO)5] 3 were isolated by column chromatography on silicagel. The P? H group in 2 results from a cleavage of the P? SiMe3 bond during chromatography. The Cr(CO)5 group in 2 is linked to an iPr? Pe atom, in 3 to the Me3Si? Pe atom of the P7 skeleton. The substituents do not force the formation of a single isomer; nevertheless 3 ist considerably favoured as compared to 2 . From the reaction of 1 with 2 equivalents of Cr(CO)5THF the yellow iPr2(H)P7[Cr(CO)5]2 4 was isolated bearing one Cr(CO)5 group at an iPr? Pe atom, the other one at a Pb atom of the P7 skeleton. Compound 3 yields with Cr(CO)4NBD the red iPr2(Me3Si)P7[Cr(CO)5][Cr(CO)4] 5 . Three isomers of 5 appear. Two Pe atoms of 5 are bridged by the Cr(CO)4 group, the third Pe atom is linked to the Cr(CO)5 ligand. iPr2(H)P7[Fe(CO)4] was isolated from the reaction of 1 with Fe2(CO)9. 31P NMR and MS data are reported. 相似文献
7.
Formation and Structures of Chromium Carbonyl Complexes of Tris(trimethylsily)heptanortricyclane (Me3Si)3P7 (Me3Si)3P7 1 reacts with one equivalent of Cr(Co)5THF 2 to give the yellow (Me3Si)3P7[Cr(Co)5] 4. The Cr(Co)5group is attached to a Pe atom. Yellow (Me3Si)3P7[Cr(CO)5]2 5 is obtained either from reacting 1 with two equivalents of 2 , or from 4 with one equivalent of 2. One Cr(CO)5 groups in 5 is coordinated to a Pe atom, the other one to a P,b atom. Similarly, Yellow (Me3Si)3P7[Cr(CO)5]3 6 results from reacting 5 with one equivalent of 2 . Two Cr(CO)5 groups in 6 are linked to Pb atoms, and the third one either to a Pe or the Pa atom (assignment not completely clear). Derivatives containing a Pe bridge appear in reactions of 1 with higher amounts of 2 . Such, 5 forms mixtures of the red compounds (Me3Si)3P7 × [Cr(CO)5]2[Cr(CO)4] 8 and (Me3Si)3P7[Cr(CO)5] × [Cr(CO)4] 9 , and even preferably 9 with four equivalents of 2 . In 8 , one Cr(CO)5 group is attached to that pe atom which is not engaged in the Cr(CO)4 bridge, and the second to one of the Pb atoms directly adjacent to the bridge. The additional Cr(CO)5 group in 9 is coordinated to the remaining Pb atom directly adjacent to the bridge. In reactions of 5 with even higher amounts of 2 , four Cr(CO)5 groups and one Cr(CO)4 bridge attach to the basic P7 skeleton to from the less stable Me3P7[Cr(CO)5]4[Cr(CO)4]. (Me3Si)3P7 1 reacts considerably slower with Cr(CO)5THF 2 than R3P7 (R = Et, iPr). Cr(CO)4NBD 3 reacts with 1 , but it was not possible to isolate (Me3Si)3P7[Cr(CO)4]. However, 4 with 3 forms (Me3Si)3P7[Cr(CO)5][Cr(CO)4] 7 , and 5 with 3 yields (Me3Si)3P7[Cr(CO)5]2[Cr(CO)4] 8 . The structures of 4 , 5 , 7 , 8 or 9 are quite analogous to those of the derivatives of Et3P7 but there exist significant differences in stability and reactivity. While Et3P7[Cr(CO)5]2 in solution rearranges to give the stable Et3P7[Cr(CO)5][Cr(CO)4], the analogous (Me3Si)3P7[Cr(CO)5][Cr(CO)4] 7 is not stable and is not obtained from (Me3Si)3P7[Cr(CO)5]2 5 . Et3P7[Cr(CO)5]3 can just be detected spectroscopically and rearranges easily to give Et3P7[Cr(CO)5]2 [Cr(CO)4] whereas (Me3Si)3P7[Cr(CO)5]3 6 can be isolated. These differences are caused by the greater steric requirements of Me3Si groups. The formation of a Pe–Cr(CO)4–Pe bridge, e.g., requires a Me3Si group in 1 to switch from the s to the as position. Whereas many of the complex compounds of R3P7 (R = Et, iPr) crystallize easily, the analogous derivatives of (Me3Si)3P7 did not yield crystals. The structures of the products were assigned by evaluating the coordination shift in their 31P NMR spectra and by comparision of these spectra with those of such derivatives of Et3P7 which previously had been investigated by single crystal structure determinations. 相似文献
8.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. IV. Formation and Structure of the Chromium Carbonyl Complexes of Tris(di-tert-butylphospha)heptaphosphanortricyclane (t-Bu2P)3P7 The reaction of (t-Bu2P)3P7 1 with Cr(CO)5 · THF in a molar ratio of 1:1 yields yellow crystals of (t-Bu2P)3P7[Cr(CO)5] 2 having the Cr(CO)5 group coordinated to a Pb atom (basal) of the three membered ring. With a molar ratio of 1:2 compounds 2 , (t-Bu2P)3P7[Cr(CO)5]2 3 , (t-Bu2P)3P7[Cr(CO)5][Cr(CO)4] 4 and (t-Bu2P)3P7[Cr(CO)4]2 5 were obtained. In 3 (yellow crystals) one Cr(CO)5 group is linked to a Pb atom, the other one to an exocyclic Pexo atom. On irradiation 3 loosing one CO group generates 4 (orange red crystals) with an unchanged Cr(CO)5 group linked to the Pb atom and a five membered chelate-like ring containing an apical Pa atom, two equatorial Pa atoms, one Pexo atom and the Cr atom of the carbonyl group. Compound 5 (orange red crystals) contains two such five membered rings. (t-Bu2P)3P7[Cr(CO)4]3 6 (red needles) is formed with Cr(CO)5 · THF in a molar ratio of 1 : 1. However, even with higher amounts of Cr(CO)5 · THF and after extended reaction times, only 6 is formed; no further Cr carbonyl group could be attached to the P skeleton. With Cr(CO)5 · NBD in a molar ratio of 1 : 1, (t-Bu2P)3P7[Cr(CO)4] 7 is produced from 1, and 5 with a molar ratio of 2 : 1. As in 4, the Cr(CO)4 group in 7 (orange crystals) participates in a five membered chelate-like ring. It was not possible to generate 6 from 5 with an excess of Cr(CO)4 · NBD and with extended reaction times. The molecular structures of the compounds were identified by investigating the 31P[1H] NMR spec-tra and considering especially the coordination shift, and by crystal structure determinations of 2 and 4. Compound 2 crystallizes in the space group PI (no.2) with a = 1566.2(4) pm, b = 2304.1(5) pm, c = 1563.3(4) pm,α = 95.57(3)°, β = 108.79(3)°, γ = 109.82(4)° and Z = 4 formula units in the elementary cell. Compound 4 crystallizes in the space group P 21 /n (no. 14) with a = 1416.6(5) pm, b = 2573.6(5) pm, c = 1352.9(4) pm,β = 99.17(5)° and Z = 4 formula units in the elementary cell. 相似文献
9.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. X. The Influence of the Formation of Complex Compounds on the Reactivity of [(Me3Si)2P]2PH Whereas [(Me3Si)2P]2PH 1 by BuLi is attacked at the PH group to give [(Me3Si)2P]2PLi 2 , the related chromium carbonyl complex (Me3Si)PIV ? 2PIV(H) ? 3PIII(Si? Me3)2 · Cr(CO)4 3 with BuLi yields Li(Me3Si)1PIV ? 2PIV(H) ? 3PIII(SiMe3)2 · Cr(CO)4 4 by cleaving a Si? P bond at the chromium substituted 1P atom. Dissolved in ether, 4 is stable for a longer time, while under comparable conditions 2 forms Li3P7 which is not obtained from 4 . MeOH in 3 cleaves selectively the Me3Si groups from the complex substituted P atom yielding (Me3Si)(H)1PIV ? 2PIV(H) ? 3PIII(SiMe3)2 · Cr(CO)4 5 and HPIV ? 2PIV(H) ? 3PIII(SiMe3)2Cr(CO)4 6. 5 and 6 seem to be stable in contrast to the uncoordinated triphosphanes which are not known. 相似文献
10.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XIII [1]. [η2-{tBu2P? P?PtBu2} PtBr(PPh3)] [η2-{tBu2P? P?PtBu2} PtBr(PPh3)] 1 is the first transition metal complex compound resulting from a phosphino-phosphinidene-phosphorane. The yellow crystals of 1 (fp. 201–203°C, decomp.) were obtained by reacting tBu2P? P?P(Br)tBu2 with either (Ph3P)2Pt · C2H4, or with Pt(PPh3)4, resp. Compound 1 crystallizes triclinic in the space group P1 (no. 2) with a = 1076.80(8) pm, b = 1344.61(8) pm, c = 1381.16(9) pm, α = 81.773(6)°, β; = 85,110(8), γ = 88,776(7). 相似文献
11.
Harald Krautscheid Eberhard Matern Jolanta Olkowska‐Oetzel Jerzy Pikies Gerhard Fritz 《无机化学与普通化学杂志》2001,627(5):999-1002
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXV. Formation and Structure of [{ cyclo ‐P3(PtBu2)3}{Ni(CO)2}{Ni(CO)3}] tBu2P–P=P(R)tBu2 (R = Br, Me) reacts with [Ni(CO)4] yielding [{cyclo‐P3(PtBu2)3}{Ni(CO)2}{Ni(CO)3}]. The two cis‐tBu2P substituents of the cyclotriphosphane, which results from the trimerization of the phosphinophosphinidene tBu2P–P, are coordinating to a Ni(CO)2 unit forming a five‐membered P4Ni chelate ring. The trans‐tBu2P group is linked to a Ni(CO)3 unit. The compound crystallizes in the orthorhombic space group Pbca (No. 61) with a = 933.30(5), b = 2353.2(1) and c = 3474.7(3) pm. 相似文献
12.
Transition Metal Complexes of P-rich Phosphanes and Silyphosphanes. III. Complex Compounds (t-Bu)3P9 · Cr(CO)5 and (t-Bu)3P9 · 2 Cr(CO)5 Derived from Nonaphosphane (3) (t-Bu)3P9 The reaction of (t-Bu)3P9 1 with Cr(CO)5 · THF in a molar ratio of 1:1 yields (t-Bu)3P9 · Cr(CO)5 2 (yellow crystals) with the Cr(CO)5 group coordinated to an equatorial P atom of the P9 skeleton. In the reaction of 1 with 2 moles of Cr(CO)5 · THF the complex product (t-Bu)3P9 · 2 Cr(CO)5 3 is formed with the second Cr(CO)5 group linked to a basal P atom. Evidence for this comes from 31P NMR spectra as well as from crystal structure determinations of 2 and 3.2 crystallizes in the space group P21/n with a = 1012,9(2) pm, b = 2961,9(4) pm, c = 983,2(2) pm, β = 101,41(2)° and Z = 4 formula units. 3 crystallizes on the space group Pbcn with a = 2675,8(8) pm, b = 1222,4(2)pm, c = 2212,3 pm and Z = 8. In 2 and 3 the equatorial P atoms opposite to the P2 dumbbell are complexed. The further complexation in 3 takes place at a basal P atom in Z-arrangement. The distances d(P Cr) are 243.5(1) pm and 240.5(1) pm and 240.5(1) pm for the equatorial P atoms in bf 2 and 3, respectively. For the basal P atom is 3 the distance in 235.7 pm. The P P distance range from 217.5 to 223.0 pm with the shorter ones at the bridgehead atom and the longer one at the P2 dumbbell. The structures are discussed with that of the free ligand. 相似文献
13.
G. Fritz E. Layher H. Krautscheid B. Mayer E. Matern W. Hnle H. G. V. Schnering 《无机化学与普通化学杂志》1992,611(5):56-60
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VII. Formation and Structure of [Li(DME)3]2{(SiMe3)[Cr(CO)5]2 P-P ? P-P[Cr(CO)5]2(SiMe3)} Deep red crystals of the title compound 1 are produced in the reaction of LiP(Me3Si)2[Cr(CO)5] with 1, 2-dibromoethane in DME. The structure of 1 was derived from the investigation of the 31P-NMR spectra and confirmed by a single crystal structure determination. 1 crystallizes in the space group P1 (no. 2); a = 1307.8(5)pm, b = 1373.1(5)pm, c = 1236.1(4)pm, α = 106.22(4)°, β = 88.00(3)°, γ = 115.52(4)° and Z = 1. 1 forms a salt composed of a dianion R2R4′P42? (R ? SiMe3, R′ ? Cr(CO)5) and solvated Li+ cations. The zigzag shaped dianion possesses the symmetry 1 -Ci. The distances d(P? P) = 202.5(1)pm and d(P? P) = 221.9(1)pm correspond to a double bond and single bonds, respectively. The distances d(Cr? P) = 251.1(1) pm and 255.3(1) pm are larger than those observed so far which might be caused by the charge distribution in the dianion. 相似文献
14.
Investigations Concerning the Reactivity of the Higher Silylphosphanes (me3Si)4P2, [(me3Si)2P]2PH, [(me3Si)2P]2P—Sime3, and (me3Si)3P7 The reaction of (me3Si)2P? P(Sime3)2 1 in ether solutions (THF, monoglyme) with t-buLi (me ? CH3; t-bu ? (CH3)3C) yields (me3Si)3P, (me3Si)2PLi and Li3P7 via (me3Si)2P? P(Li) (Sime3) 4 . Already at ?40° (me3Si)3P2Li 4 decomposes yielding (me3Si)2PLi, Li3P7 and (me3Si)3P. The metallation of (me3Si)3P2H with t-buLi leads to the same results. t-buLi with [(me3Si)2P]2PH 2 in pentane forms [(me3Si)2P]2PLi, which reacts on with meCl or me3SiCl to [(me3Si)2P]2Pme or [(me3Si)2P]2PSime3, resp. On addition of monoglyme to a suspension of [(me3Si)2P]2PLi in pentane, or by treating [(me3Si)2P]2PH in ethers with t-buLi (me3Si)2PLi, Li3P7, (me3Si)3P, are formed. The same compounds are generated by reacting [(me3Si)2P]2P—Sime3 in ethers with t-buLi. The metallation of (me3Si)3P7 in ethers with t-buLi yields (me3Si)2PLi, (me3Si)3P, (t-bu)3P4?(Sime3), Li3P7 and a red solid. The formation of (me3Si)2P7Li is the first step of this reaction. 相似文献
15.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. XI. Formation, Reactions, and Structures of Chromium Carbonyl Complexes from Reactions of Li(THF)2[η2-(tBu2P)2P] with Cr(CO)5 · THF and Cr(CO)4 · NBD Reactions of Li(THF)2[η2-(tBu2P)2P] 1 with Cr(CO)5 · THF yield Li(THF)2Et2O[Cr(CO)4{η2-(tBu2P)2P}η1-Cr(CO)5] 2 and the compounds [Cr(CO)4{η2-(tBu2P)2PH}] 3 , [Cr(CO)5{η1-(tBu2P)2PH}] 4 , (tBu2P)2PH 5 and tBu2PH · Cr(CO)5 6 . The formation of 3, 4, 5 and 6 is due to byproducts coming from the synthesis of 1. 2 reacts with CH3COOH under formation of 3 . After addition of 12-crown-4 1 with NBD · Cr(CO)4 in THF forms Li(12-crown-4)2[Cr(CO)4-{η2-(tBu2P)2P}] 7 (yellow crystals). 7 reacts with CH3COOH to 3 – which regenerates 7 with LiBu – with Cr(CO)5THF to compound 2 , with NBD · Cr(CO)4 in THF to 2 and 3 (ratio 1 : 1). With EtBr, 7 forms [Cr(CO)4{η2-(tBu2P)2PEt}] 8 , and [Cr(CO)4{η2-(tBu2P)2PBr}] 9 with BrCH2? CH2Br. The compounds were characterized by means of 1H, 13C, 31P, 7Li NMR spectroscopy, IR spectroscopy, elementary analysis, mass spectra, and 2, 3 and 4 additionally by means of X-ray diffraction analysis. 2 crystallizes in the space group P1 with 2 formula units in the elementary cell; a = 10.137(9), b = 15.295(12), c = 15.897(14) Å; α = 101.82(7), β = 91.65(7), γ = 98.99(7)°; 3 crystallizes in the space group P2t/n with 4 molecules in the elementary unit; a = 11.914(6), b = 15.217(10), c = 14.534(10) Å; α = 90, β = 103.56(5), γ = 90°. 4 : space group P1 with 2 molecules in the elementary unit; a = 8.844(4), b = 12.291(6), c = 14.411(7) Å, α = 66.55(2), β = 89.27(2), γ = 71.44(2)°. 相似文献
16.
Coordination Chemistry of P-rich Phosphanes and Silylphasphanes. XIV. The Phosphinophosphinidene tBu2P? P as a Ligand in the Pt Complexes [η2-{tBu2P? P}Pt(PPh3)2] and [η2-{tBu2P? P}Pt(PEtPh2)2] [η2-{tBu2P? P}Pt(PPh3)2 1 and [η2-{tBu2P? P}Pt(PEtPh2)2] 2 are the first complex compounds of tBu2P? P 5 . They are formed in the reaction of tBu2P? P ? P(Me)tBu2 3 with [η2-{H2C ? CH2}Pt(PPh3)2] 6 or [η2-{H2C ? CH2}Pt(PEtPh2)2] 7 , respectively. Compound 1 is less stable than 2 and reacts on to [η2-{tBu2P? P} Pt(PPh3)(PtBu2Me)] 10 with the coincidently formed tBu2PMe. The molecular structures of 1 and 2 were derived from their 1H and 31P-NMR spectra, 2 was additionally characterized by a X ray structure determination. 2 crystallizes in the monoclinic space group P21/n with a = 1222.36(7) pm, b = 1770.7(1) pm, c = 1729.7(1) pm, β = 108.653(6)°. 相似文献
17.
Harald Krautscheid Eberhard Matern Jolanta Olkowska‐Oetzel Jerzy Pikies Gerhard Fritz 《无机化学与普通化学杂志》2001,627(4):675-678
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported. 相似文献