首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the detection of unlabeled and 15N2‐labeled l ‐tryptophan (l ‐Trp), l ‐kynurenine (l ‐Kyn), serotonin (5‐HT) and quinolinic acid (QA) in human and rat plasma by GC/MS is described. Labeled and unlabeled versions of these four products were analyzed as their acyl substitution derivatives using pentafluoropropionic anhydride and 2,2,3,3,3‐pentafluoro‐1‐propanol. Products were then separated by GC and analyzed by selected ion monitoring using negative ion chemical ionization mass spectrometry. l ‐[13C11, 15N2]‐Trp, methyl‐serotonin and 3,5‐pyridinedicarboxylic acid were used as internal standards for this method. The coefficients of variation for inter‐assay repeatability were found to be approximately 5.2% for l ‐Trp and 15N2‐Trp, 17.1% for l ‐Kyn, 16.9% for 5‐HT and 5.8% for QA (n = 2). We used this method to determine isotope enrichments in plasma l ‐Trp over the course of a continuous, intravenous infusion of l ‐[15N2]Trp in pregnant rat in the fasting state. Plasma 15N2‐Trp enrichment reached a plateau at 120 min. The free Trp appearance rate (Ra) into plasma was 49.5 ± 3.35 µmol/kg/h. The GC/MS method was applied to determine the enrichment of 15N‐labeled l ‐Trp, l ‐Kyn, 5‐HT and QA concurrently with the concentration of non‐labeled l ‐Trp, l ‐Kyn, 5‐HT and QA in plasma. This method may help improve our understanding on l ‐Trp metabolism in vivo in animals and humans and potentially reveal the relative contribution of the four pathways of l ‐Trp metabolism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The room‐temperature crystal structures of four new thio derivatives of N‐methylphenobarbital [systematic name: 5‐ethyl‐1‐methyl‐5‐phenylpyrimidine‐2,4,6(1H,3H,5H)‐trione], C13H14N2O3, are compared with the structure of the parent compound. The sulfur substituents in N‐methyl‐2‐thiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐2‐thioxo‐1,2‐dihydropyrimidine‐4,6(3H,5H)‐dione], C13H14N2O2S, N‐methyl‐4‐thiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐4‐thioxo‐3,4‐dihydropyrimidine‐2,6(1H,5H)‐dione], C13H14N2O2S, and N‐methyl‐2,4,6‐trithiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenylpyrimidine‐2,4,6(1H,3H,5H)‐trithione], C13H14N2S3, preserve the heterocyclic ring puckering observed for N‐methylphenobarbital (a half‐chair conformation), whereas in N‐methyl‐2,4‐dithiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐2,4‐dithioxo‐1,2,3,4‐tetrahydropyrimidine‐6(5H)‐one], C13H14N2OS2, significant flattening of the ring was detected. The number and positions of the sulfur substituents influence the packing and hydrogen‐bonding patterns of the derivatives. In the cases of the 2‐thio, 4‐thio and 2,4,6‐trithio derivatives, there is a preference for the formation of a ring motif of the R22(8) type, which is also a characteristic of N‐methylphenobarbital, whereas a C(6) chain forms in the 2,4‐dithio derivative. The preferences for hydrogen‐bond formation, which follow the sequence of acceptor position 4 > 2 > 6, confirm the differences in the nucleophilic properties of the C atoms of the heterocyclic ring and are consistent with the course of N‐methylphenobarbital thionation reactions.  相似文献   

3.
Heterylation of 3-R1-5-R2-1'2'4-triazoles (pK a 3-12) with N-alkyl-, N-alkenyl-, N-alkoxy-carbonyl-, N-oxoalkyl-, N-nitroxyalkyl, N-nitroaminoalkyl-3'5-dinitro-1'2'4-triazoles results insubstitution of a nitro group in 5 position of the dinitro compound yielding 1-R-methyl-3-nitro-5-(3-R1-5-R2-1,2,4-triazolyl)-1,2,4-triazoles. The side processes: Hydroxide-ion attack on C5 and (or) N1 of the ring both in the substrate and in the target compound afford 1-R-methyl3-nitro-1,2,4-triazol-5-ones, 3,5-dinitro-1,2,4-triazole and NH-acids of N-C-bitriazole series. Optimal reaction media are aprotic dipolar substances, and for compounds prone to heterolysis ethyl acetate-water systems. The azole pK a is the decisive factor controlling the composition and the ratio of reaction products. The process is promising for azoles with pK a > 5, and the optimal range of pK a is 8-10.  相似文献   

4.
Methylation is an essential metabolic process in the biological systems, and it is significant for several biological reactions in living organisms. Methylated compounds are known to be involved in most of the bodily functions, and some of them serve as biomarkers. Theoretically, all α‐amino acids can be methylated, and it is possible to encounter them in most animal/plant samples. But the analytical data, especially the mass spectral data, are available only for a few of the methylated amino acids. Thus, it is essential to generate mass spectral data and to develop mass spectrometry methods for the identification of all possible methylated amino acids for future metabolomic studies. In this study, all N‐methyl and N,N‐dimethyl amino acids were synthesized by the methylation of α‐amino acids and characterized by a GC‐MS method. The methylated amino acids were derivatized with ethyl chloroformate and analyzed by GC‐MS under EI and methane/CI conditions. The EI mass spectra of ethyl chloroformate derivatives of N‐methyl ( 1–18 ) and N,N‐dimethyl amino acids ( 19–35 ) showed abundant [M‐COOC2H5]+ ions. The fragment ions due to loss of C2H4, CO2, (CO2 + C2H4) from [M‐COOC2H5]+ were of structure indicative for 1–18 . The EI spectra of 19–35 showed less number of fragment ions when compared with those of 1–18 . The side chain group (R) caused specific fragment ions characteristic to its structure. The methane/CI spectra of the studied compounds showed [M + H]+ ions to substantiate their molecular weights. The detected EI fragment ions were characteristic of the structure that made easy identification of the studied compounds, including isomeric/isobaric compounds. Fragmentation patterns of the studied compounds ( 1–35 ) were confirmed by high‐resolution mass spectra data and further substantiated by the data obtained from 13C2‐labeled glycines and N‐ethoxycarbonyl methoxy esters. The method was applied to human plasma samples for the identification of amino acids and methylated amino acids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A combinatorial derivation of the product of the class of three cycles, [(1)N?3(3)]N with an arbitrary class operator of the symmetric group SN is presented. The form of this result suggests a conjecture concerning the expression of the general class operator product in terms of a relatively small number of reduced class coefficients. The conjecture is applied to the determination of the products of [(1)N?4(4)]N, [(1)N?4(2)2]N, and [(1)N?5(5)]N with arbitrary class operators. General expressions for the reduced class coefficients of the simplest type are obtained.  相似文献   

6.
In order to examine the preferred hydrogen‐bonding pattern of various uracil derivatives, namely 5‐(hydroxymethyl)uracil, 5‐carboxyuracil and 5‐carboxy‐2‐thiouracil, and for a conformational study, crystallization experiments yielded eight different structures: 5‐(hydroxymethyl)uracil, C5H6N2O3, (I), 5‐carboxyuracil–N,N‐dimethylformamide (1/1), C5H4N2O4·C3H7NO, (II), 5‐carboxyuracil–dimethyl sulfoxide (1/1), C5H4N2O4·C2H6OS, (III), 5‐carboxyuracil–N,N‐dimethylacetamide (1/1), C5H4N2O4·C4H9NO, (IV), 5‐carboxy‐2‐thiouracil–N,N‐dimethylformamide (1/1), C5H4N2O3S·C3H7NO, (V), 5‐carboxy‐2‐thiouracil–dimethyl sulfoxide (1/1), C5H4N2O3S·C2H6OS, (VI), 5‐carboxy‐2‐thiouracil–1,4‐dioxane (2/3), 2C5H4N2O3S·3C6H12O3, (VII), and 5‐carboxy‐2‐thiouracil, C10H8N4O6S2, (VIII). While the six solvated structures, i.e. (II)–(VII), contain intramolecular S(6) O—H…O hydrogen‐bond motifs between the carboxy and carbonyl groups, the usually favoured R22(8) pattern between two carboxy groups is formed in the solvent‐free structure, i.e. (VIII). Further R22(8) hydrogen‐bond motifs involving either two N—H…O or two N—H…S hydrogen bonds were observed in three crystal structures, namely (I), (IV) and (VIII). In all eight structures, the residue at the ring 5‐position shows a coplanar arrangement with respect to the pyrimidine ring which is in agreement with a search of the Cambridge Structural Database for six‐membered cyclic compounds containing a carboxy group. The search confirmed that coplanarity between the carboxy group and the cyclic residue is strongly favoured.  相似文献   

7.
Several N(‐hydroxyalkyl)‐2,4‐dinitroanilines were transformed into their phosphoramidites (see 5 and 6 in Scheme 1) in view of their use as fluorescence quenchers, and modified 2‐aminobenzamides (see 9, 10, 18 , and 19 in Scheme 1) were applied in model reactions as fluorophors to determine the relative fluorescence quantum yields of the 3′‐Aba and 5′‐Dnp‐3′‐Aba conjugates (Aba=aminobenzamide, Dnp=dinitroaniline). Thymidine was alkylated with N‐(2‐chloroethyl)‐2,4‐dinitroaniline ( 24 ) to give 25 which was further modified to the building blocks 27 and 28 (Scheme 3). The 2‐amino group in 29 was transformed by diazotation into the 2‐fluoroinosine derivative 30 used as starting material for several reactions at the pyrimidine nucleus (→ 31, 33 , and 35 ; Scheme 4). The 3′,5′‐di‐O‐acetyl‐2′‐deoxy‐N2‐[(dimethylamino)methylene]guanosine ( 37 ) was alkylated with methyl and ethyl iodide preferentially at N(1) to 43 and 44 , and similarly reacted N‐(2‐chloroethyl)‐2,4‐dinitroaniline ( 24 ) to 38 and the N‐(2‐iodoethyl)‐N‐methyl analog 50 to 53 (Scheme 5). The 2′‐deoxyguanosine derivative 53 was transformed into 3′,5′‐di‐O‐acetyl‐2‐fluoro‐1‐{2‐[(2,4‐dinitrophenyl)methylamino]ethyl}inosine ( 54 ; Scheme 5) which reacted with 2,2′‐[ethane‐1,2‐diylbis(oxy)]bis[ethanamine] to modify the 2‐position with an amino spacer resulting in 56 (Scheme 6). Attachment of the fluorescein moiety 55 at 56 via a urea linkage led to the doubly labeled 2′‐deoxyguanosine derivative 57 (Scheme 6). Dimethoxytritylation to 58 and further reaction to the 3′‐succinate 59 and 3′‐phosphoramidite 60 afforded the common building blocks for the oligonucleotide synthesis (Scheme 6). Similarly, 30 reacted with N‐(2‐aminoethyl)‐2,4‐dinitroaniline ( 61 ) thus attaching the quencher at the 2‐position to yield 62 (Scheme 7). The amino spacer was again attached at the same site via a urea bridge to form 64 . The labeling of 64 with the fluorescein derivative 55 was straigthforward giving 65 . and dimethoxytritylation to 66 and further phosphitylation to 67 followed known procedures (Scheme 7). Several oligo‐2′‐deoxynucleotides containing the doubly labeled 2′‐deoxyguanosines at various positions of the chain were formed in a DNA synthesizer, and their fluorescence properties and the Tms in comparison to their parent duplexes were measured (Tables 15).  相似文献   

8.
The results of seven cocrystallization experiments of the antithyroid drug 6‐methyl‐2‐thiouracil (MTU), C5H6N2OS, with 2,4‐diaminopyrimidine, 2,4,6‐triaminopyrimidine and 6‐amino‐3H‐isocytosine (viz. 2,6‐diamino‐3H‐pyrimidin‐4‐one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen‐bonding site, while the three coformers show complementary DAD hydrogen‐bonding sites and therefore should be capable of forming an ADA/DAD N—H...O/N—H...N/N—H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–1‐methylpyrrolidin‐2‐one (1/1/2), C5H6N2OS·C4H6N4·2C5H9NO, (I), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/1), C5H6N2OS·C4H6N4, (II), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylacetamide (2/1/2), 2C5H6N2OS·C4H6N4·2C4H9NO, (III), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/1/2), C5H6N2OS·0.5C4H6N4·C3H7NO, (IV), 2,4,6‐triaminopyrimidinium 6‐methyl‐2‐thiouracilate–6‐methyl‐2‐thiouracil–N,N‐dimethylformamide (1/1/2), C4H8N5+·C5H5N2OS·C5H6N2OS·2C3H7NO, (V), 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (1/1/1), C5H6N2OS·C4H6N4O·C3H7NO, (VI), and 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–dimethyl sulfoxide (1/1/1), C5H6N2OS·C4H6N4O·C2H6OS, (VII). Whereas in cocrystal (I) an R22(8) interaction similar to the Watson–Crick adenine/uracil base pair is formed and a two‐dimensional hydrogen‐bonding network is observed, the cocrystals (II)–(VII) contain the triply hydrogen‐bonded ADA/DAD N—H...O/N—H...N/N—H...S synthon and show a one‐dimensional hydrogen‐bonding network. Although 2,4‐diaminopyrimidine possesses only one DAD hydrogen‐bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).  相似文献   

9.
The crystal structures of almotriptan {systematic name: N,N‐dimethyl‐2‐[5‐(pyrrolidin‐1‐ylsulfonylmethyl)‐1H‐indol‐3‐yl]ethanamine}, C17H25N3O2S, and almotriptan malate {systematic name: N,N‐dimethyl‐2‐[5‐(pyrrolidin‐1‐ylsulfonylmethyl)‐1H‐indol‐3‐yl]ethanaminium malate, C17H26N3O2S+·C4H5O5, a novel selective serotonin 1B/D agonist, have been determined in order to gain further insight into the structure–activity relationships of triptans. The two structures differ in the orientation of their sulfonylpyrrolidine side chains. A comparison with other triptans reveals that molecules of almotriptan, sumatriptan, zolmitriptan and rizatriptan can adopt two principal conformations. N—H...N, N—H...O and O—H...O hydrogen bonds are responsible for the molecular packing.  相似文献   

10.
Two mononuclear copper complexes, {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}(3,5‐dimethyl‐1H‐pyrazole‐κN2)(perchlorato‐κO)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}bis(3,5‐dimethyl‐1H‐pyrazole‐κN2)copper(II) bis(hexafluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (TDPA) in acetone–water solutions at room temperature. Single‐crystal X‐ray diffraction analysis revealed that they contain the new tridentate ligand bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen‐bond interactions.  相似文献   

11.
Three new manganese(II), lead(II) and cadmium(II) coordination complexes have been prepared by reaction of N‐(1H‐tetrazol‐5‐yl)cinnamamide (HNTCA) with divalent metal salts (MnCl2, PbCl2 and CdCl2) in a mixed‐solvent system, affording mononuclear to trinuclear structures namely, bis(methanol‐κO)bis[5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ2N1,O]manganese(II), [Mn(C10H8N5O)2(CH3OH)2], (1), bis[μ‐5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido]‐κ3N1,O:N23N2:N1,O‐bis{aqua[5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ2N1,O]lead(II)}, [Pb2(C10H8N5O)4(H2O)2], (2), and hexakis[μ2‐5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ3N1,O:N2]tricadmium(II), [Cd3(C10H8N5O)6], (3). The structures of these three compounds reveal that the nature of the metal ions and the side groups of the organic building blocks have a significant effect on the structures of the coordination compounds formed. Intermolecular hydrogen bonds link the molecules into two‐dimensional [complex (1)] and three‐dimensional hydrogen‐bonded networks. Complexes (2) and (3) show significant fluorescence, while complex (1) displays no fluorescence.  相似文献   

12.
The reaction of the imide–nitride complex [{Ti(η5‐C5Me5)(μ‐NH)}33‐N)] with potassium iodide in pyridine at room temperature affords the adduct di‐μ‐iodido‐1:1′κ4I‐bis{tri‐μ3‐imido‐1:2:3κ3N;1:2:4κ3N;1:3:4κ3N‐μ3‐nitrido‐2:3:4κ3N‐tris[2,3,4(η5)‐pentamethylcyclopentadienyl](pyridine‐1κN)‐tetrahedro‐potassiumtrititanium(IV)}, [K2Ti6(C10H15)6I2N2(NH)6(C5H5N)2] or [(C5H5N)(μ‐I)K{(μ3‐NH)3Ti35‐C5Me5)33‐N)}]2. The crystal structure contains two [KTi3N4] cube‐type units held together by two bridging I atoms. There is a centre of inversion located in the middle of this unprecedented discrete K2I2 unit. The geometry around K is best described as distorted trigonal prismatic, with three imide groups, two bridging I atoms and one pyridine ligand.  相似文献   

13.
The bond distances and bond angles of 5-(p-chlorophenyl)-1,2,4-triazine determined by three dimensional X-ray crystallographic analysis are reported. The pertinent bond lengths are N1? N2, 1.335Å, N2-C3, 1.314Å, C3? N4, 1.339; N4-C5, 1.317; C5-C6, 1.401; C6? N1, 1.317Å. A comparison of these bond distances with those of similar polyazabenzenes shows that the canonical structure of 1,2,4-triazine with a N1? N2 single bond more closely represents the ground state of this ring system, than the one with a N1? N2 double bond.  相似文献   

14.
N-Mesyl-2-(1-methyl-1-butenyl)-6-methylaniline reacted with Br2 to afford N-mesyl-2-(3-bromo-1-penten-2-yl)aniline that under treatment with NH3 or amines underwent cyclization into N-mesyl-7-methyl-3-methylene-2-ethylindoline. The reaction of N-mesyl-2-(1-methyl-1-buten-1-yl)-4-methyl- and 2-(1-methyl-1-buten-1-yl)aniline with Br2 gave rise to the corresponding N-mesyl-2-(2-bromo-1-methyl-1-buten-1-yl)anilines. Under the similar conditions N-tosyl-2-(1-cyclohexen-1-yl)aniline was converted into N-tosyl-2-(6-bromo-1-cyclohexen-1-yl)aniline that under treatment with NH3 furnished N-tosyl-1,2,3,9a-tetrahydrocarbazole. The reaction of N-mesyl-1,2,3,9a-tetrahydrocarbazole with CuBr2 in MeOH afforded N-mesyl-4-methoxy-1,2,3,4-tetrahydrocarbazole. N-Mesyl-6-methyl-2-(1-cyclopenten-1-yl)aniline in reaction with Br2 in the presence of NaHCO3 was oxidized into the corresponding cyclopentenone, and with NBS it gave N-mesyl-2-(2-bromo-1-cyclopenten-1-yl)aniline.__________Translated from Zhurnal Organicheskoi Khimii, Vol. 41, No. 5, 2005, pp. 730–737.Original Russian Text Copyright © 2005 by Gataullin, Sotnikov, Spirikhin, Abdrakhmanov.  相似文献   

15.
The structures of novel cocrystals of 4-nitropyridine N-oxide with benzenesulfonamide derivatives, namely, 4-nitrobenzenesulfonamide–4-nitropyridine N-oxide (1/1), C5H4N2O3·C6H6N2O4S, and 4-chlorobenzenesulfonamide–4-nitropyridine N-oxide (1/1), C6H6ClNO2S·C5H4N2O3, are stabilized by N—H…O hydrogen bonds, with the sulfonamide group acting as a proton donor. The O atoms of the N-oxide and nitro groups are acceptors in these interactions. The latter is a double acceptor of bifurcated hydrogen bonds. Previous studies on similar crystal structures indicated competition between these functional groups in the formation of hydrogen bonds, with the priority being for the N-oxide group. In contrast, the present X-ray studies indicate the existence of a hydrogen-bonding synthon including N—H…O(N-oxide) and N—H…O(nitro) bridges. We present here a more detailed analysis of the N-oxide–sulfonamide–nitro N—H…O ternary complex with quantum theory computations and the Quantum Theory of Atoms in Molecules (QTAIM) approach. Both interactions are present in the crystals, but the O atom of the N-oxide group is found to be a more effective proton acceptor in hydrogen bonds, with an interaction energy about twice that of the nitro-group O atoms.  相似文献   

16.
5-R-Substituted 1(2)-vinyltetrazoles (R = Ar, Alk, CH2=CH, NH2, H) were synthesized by alkylation of 5-R-tetrazoles with 1,2-dibromoethane in the presence of triethylamine in acetonitrile, followed by elimination of triethylamine hydrobromide. Vinylation of dinuclear substrates, such as bis(1H-tetrazol-5-yl)-methane and 1,3-bis(1H-tetrazol-5-yl)benzene, under analogous conditions gave the corresponding N 1,N 2′- and N 2,N 2′-divinyl derivatives.  相似文献   

17.
Water‐soluble T‐antigen‐ (Galβ(1–3)‐GalNAcα) containing random glycopolymers were synthesized by two strategies: i) radical copolymerization of N‐acryloylated monomers with (NH4)2S2O8 and ii) graft conjugation of an end‐group‐aminated T‐antigen together with labeling reagent ( 16 ) by amidation onto poly(N‐acryloxysuccinimide) and its derivatives followed by quenching with NH4OH. All glycoconjugates demonstrated antigenicity by double‐radial immunodiffusion assays with peanut lectin from Arachis hypogaea. The biocytin‐labeled terpolymer ( 23 ) also showed practical heterobifunctional antigenicity toward peanut lectin and streptavidin, giving the corresponding two precipitin bands in the assay.  相似文献   

18.
Doubly and triply hydrogen‐bonded supramolecular synthons are of particular interest for the rational design of crystal and cocrystal structures in crystal engineering since they show a high robustness due to their high stability and good reliability. The compound 5‐methyl‐2‐thiouracil (2‐thiothymine) contains an ADA hydrogen‐bonding site (A = acceptor and D = donor) if the S atom is considered as an acceptor. We report herein the results of cocrystallization experiments with the coformers 2,4‐diaminopyrimidine, 2,4‐diamino‐6‐phenyl‐1,3,5‐triazine, 6‐amino‐3H‐isocytosine and melamine, which contain complementary DAD hydrogen‐bonding sites and, therefore, should be capable of forming a mixed ADADAD N—H…S/N—H…N/N—H…O synthon (denoted synthon 3sN·S;N·N;N·O), consisting of three different hydrogen bonds with 5‐methyl‐2‐thiouracil. The experiments yielded one cocrystal and five solvated cocrystals, namely 5‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/2), C5H6N2OS·2C4H6N4, (I), 5‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/2/1), 2C5H6N2OS·2C4H6N4·C3H7NO, (II), 5‐methyl‐2‐thiouracil–2,4‐diamino‐6‐phenyl‐1,3,5‐triazine–N,N‐dimethylformamide (2/2/1), 2C5H6N2OS·2C9H9N5·C3H7NO, (III), 5‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (2/2/1), (IV), 2C5H6N2OS·2C4H6N4O·C3H7NO, (IV), 5‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylacetamide (2/2/1), 2C5H6N2OS·2C4H6N4O·C4H9NO, (V), and 5‐methyl‐2‐thiouracil–melamine (3/2), 3C5H6N2OS·2C3H6N6, (VI). Synthon 3sN·S;N·N;N·O was formed in three structures in which two‐dimensional hydrogen‐bonded networks are observed, while doubly hydrogen‐bonded interactions were formed instead in the remaining three cocrystals whereby three‐dimensional networks are preferred. As desired, the S atoms are involved in hydrogen‐bonding interactions in all six structures, thus illustrating the ability of sulfur to act as a hydrogen‐bond acceptor and, therefore, its value for application in crystal engineering.  相似文献   

19.
Temperature dependent proton magnetic resonance spectra of dichloro- and dimethyltin(IV) bis(N,N-di-isopropyl-dithiocarbamate) ( 1 and 2 , respectively), dimethylchlorotin(IV) N,N-di-isopropyldithiocarbamate ( 3 ), dimethyltin(IV) bis(N-isopropyldithiocarbamate) ( 4 ), S-methyl-N,N-di-isopropyldithiocarbamate ( 5 ) and S-methyl-N-isopropyldithiocarbamate ( 6 ) were measured in halogenated hydrocarbons or CS2. The internal rotation around the isopropyl–nitrogen bond of 1, 2, 3 and 5 is restricted below ?30°C, and that of 4 and 6 below ?70°C; 1, 2 and 3 exist as only one conformer in dichloromethane, while 5 exists as two rotational isomers with respect to the isopropyl–nitrogen bond with a mole ratio of about 2·7:1·0 in CS2 below ?30°C. At this temperature, 6 exists as two stereoisomers in CS2 with a mole ratio of about 1·2:1·0, although there is no stereoisomer in 4 . From these results, possible conformations of the compounds at low temperature are proposed and the assignments of each proton signal are described.  相似文献   

20.
A homochiral helical three‐dimensional coordination polymer, poly[[(μ2‐acetato‐κ3O,O′:O)(hydroxido‐κO)(μ4‐5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ5N1,O:N2:N4:N5)(μ3‐5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ4N1,O:N2:N4:N5)dicadmium(II)] 0.75‐hydrate], {[Cd2(C7H5N6O)2(CH3COO)(OH)]·0.75H2O}n, was synthesized by the reaction of cadmium acetate, N‐(1H‐tetrazol‐5‐yl)isonicotinamide (H‐NTIA), ethanol and H2O under hydrothermal conditions. The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated 5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ide (NTIA) ligands, one acetate anion, one hydroxide anion and three independent partially occupied water sites. The two CdII cations, with six‐coordinated octahedral and seven‐coordinated pentagonal bipyramidal geometries are located on general sites. The tetrazole group of one symmetry‐independent NTIA ligand links one of the independent CdII cations into 61 helical chains, while the other NTIA ligand links the other independent CdII cations into similar but unequal 61 helical chains. These chains, with a pitch of 24.937 (5) Å, intertwine into a double‐stranded helix. Each of the double‐stranded 61 helices is further connected to six adjacent helical chains through an acetate μ2‐O atom and the tetrazole group of the NTIA ligand into a three‐dimensional framework. The helical channel is occupied by the isonicotinamide groups of NTIA ligands and two helices are connected to each other through the pyridine N and carbonyl O atoms of isonicotinamide groups. In addition, N—H...O and O—H...N hydrogen bonds exist in the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号