首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ion intensity ratios from α-fissions of N-t-alkylethylamines are independent of electron energy above 18 eV and they directly follow the ‘ion mass effect’ in this region. The course of the intensity ratios over the whole energy range can be explained by combination of appearance energy differences and the ion mass effect. In the upper energy region the increase of the ion intensity ratios I(M? Rlarge): I(M? Rsmall) normally found with increasing electron energy is mainly caused by successive decomposition of the ions. This is shown from investigations of N-t-alkylacetamides. A correlation is found between the masses of the primary ions and the tendency towards secondary ion formation, and the internal energy of the primary ions is found to have an influence too. The ‘ion mass effect’ is not a direct effect of the ion masses.  相似文献   

2.
The loss of AgH from [M + Ag]+ precursor ions of tertiary amines, aminocarboxylic acids and aryl alkyl ethers is examined by deuterium labeling combined with collision activation (CA) dissociation experiments. It was possible to demonstrate that the AgH loss process is highly selective toward the hydride abstraction. For tertiary amines and aminocarboxylic acids, hydrogen originates from the α‐methylene group carrying the nitrogen function (formation of an immonium ion). In all cases examined, the most stable, i.e. the thermodynamically favored product ion is formed. In the AgH loss process, a large isotope effect operates discriminating against the loss of D. The [M + Ag]+ ion of benzyl methyl ether loses a hydride ion exclusively from the benzylic methylene group supporting the experimental finding that the AgH loss reaction selectively cleaves the weakest C? H bond available. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Positive ion electron impact mass spectral data for the four isomeric 17ξ-hydroxy-17ξ-methyl-5ξ-androstane C(3) ketones and the eight isomeric C(3ξ) alcohols are reported. In contrast to earlier reports, no general correlation was observed between the [M? H2O]+˙/[M]+˙ ratio and the configuration at C(17). The ratios of the intensity of several fragment ions to that of the molecular ion do differentiate between the 5α- and 5β-isomers in both C(3) ketones and alcohols, the extent of fragmentation being greater for 5β-steroids. All of these fragments probably involve elimination of a water molecule at some stage in their formation. Elimination of water is also enhanced for 3α- v. 3β-hydroxysteroids, particularly in a 5β-isomer.  相似文献   

4.
Mixtures of tetramethylsilane and helium have been found to form [M + 73]+ adducts, hydrated trimethylsilyl ions and alkyl ions with aliphatic alcohols. The adduct ions were found to be formed by displacement of water from the hydrated trimethylsilyl ion. Ratios of the abundances of the adduct ions to the hydrated trimethylsilyl ion can be used to differentiate among primary, secondary and tertiary alcohols. Sensitivities for a number of alcohols with the tetramethylsilane/helium chemical ionization reagent system are approximately equal.  相似文献   

5.
Chemical ionization mass spectrometry of the title compounds demonstrates that the formation of the [M+H? CH3OH]+ ions is strongly influenced by the degree as well as the type of alkyl substitution of the α-carbon atom. The extent of cyclization (i.e. formation of [M+H? CH3OH]+) closely resembles that of the activated esters in condensed phases.  相似文献   

6.
For the title compounds I(M), A[M ? H]+ and A[M ? Me]+ have been determined. In the biaryl compounds, unlike the xylene and the two dimethylnaphthalenes studied, A[M ? Me]+ is noticeably dependent on the position of the methyl group. Deuterium labelling of the methyl groups in the biaryl compounds reveals that more than one process is involved in the formation of the [M ? Me]+ ion. In contrast, only in the case of 2,2′-dimethylbiphenyl is the appearance potential of the [M ? H]+ ion position dependent. The labelling results suggest complete scrambling of the hydrogen atoms before formation of the [M ? H]+ ions. Some comments are made on the problem of trying to relate differences in strain energies and ionisation and appearance potentials in alkyl substituted aromatics.  相似文献   

7.
The mass spectra of five diazaphenanthrenes formed by photochemical cyclodehydrogenation of styryl diazines are investigated. It is shown that fragmentation of these compounds starts almost exclusively at the heterocyclic part of the molecule and proceeds by competitive α-cleavage. From the intensity ratios of the ions [M ? H˙]+, [M ? HCN]+˙, [M ? N2]+˙ and [M ? 2 HCN]+˙ generated in this way, each isomer can unequivocally be identified.  相似文献   

8.
The mass spectra of all stereoisomers of decalin-2,3-diol, the corresponding dimethyl ethers and of some deuterated derivatives are discussed. The mass spectra of isomeric decalin-2,3-diols differ only slightly in ion intensities. The mass spectra of the stereoisomeric 2,3-dimethoxy-decalins are nearly identical within the series of transand cisderivatives. A mass spectrometric identification of the stereoisomers of these compounds is therefore diffucult. Stereoselective eliminations from the molecular ion are not observed. The mass spectra -of stereoisomeric decalin-1,4-diols show characteristic differences in the intensities of the[M ? H2O]+˙-ions, which can be related to the geometry of the molecules in a similiar mode as was the case with cyclohexane-1,4-diols, The sterechemical control of the elimination of H2O from the molecular ions has been confirmed by deuterium labelling. The mass spectra of stereoismeric 1,4-dimethoxy-decalins also differ characteristically in the intensities of the [M ? CH3OH]+˙ ions. Furthermore peak due to the [M ? CH2O]+˙ ions are only observed in the mass spectra of those stereoisomers, which have at least one conformation with a short distance between the two methoxy. The stereospecifity of the CH3OH- and CH2O-eliminationjs has also been determined by deuterium labelling.  相似文献   

9.
In the electron impact mass spectra of some alkyl α- and β-hydroxyesters (introduced using the gas chromatography/mass spectrometry (GC/MS) technique), the absence of the molecular ion M and the presence of the [M + 1]+ ion instead is observed. This phenomenon is especially characteristic of C3? C6 glycolates and diethyl malate, and is due to chemical auto-ionization—ion-molecule reactions in the high concentration gradient at the top of the GC peak. The existence of the [M ? 2], [M ?1]+ and M ions in the mass spectra of other β- and α-hydroxyesters is discussed.  相似文献   

10.
The relative abundance of [M + H]+ ions in the spectra of different nitriles depends on the nature of the nitrile. A new method for the identification of ion-molecule reactions has been applied, by determining the [M + D]+ ion intensity with respect to the [M + H]+ ion intensity in the spectra of partially deuteriated alkyl cyanides. This intensity ratio is correlated with the hydrogen-deuterium content of the suspected primary ions. In addition not only the reacting primary ions, but also the reactive hydrogen atom in the primary ion could be indicated. There is clear evidence that the proton attached to the nitrogen atom in the H2C?C?N+˙? H rearrangement ion is transferred to the nitrile molecule.  相似文献   

11.
Chemical ionization mass spectra of several ethers obtained with He/(CH3)4Si mixtures as the reagent gases contain abundant [M + 73]+ adduct ions which identify the relative molecular mass. For the di-n-alkyl ethers, these [M + 73]+ ions are formed by sample ion/sample molecule reactions of the fragment ions, [M + 73 ? CnH2n]+ and [M + 73 ? 2CnH2n]+. Small amounts of [M + H]+ ions are also formed, predominantly by proton transfer reactions of the [M + 73 ? 2CnH2n]+ or [(CH3)3SiOH2]+ ions with the ethers. The di-s-alkyl ethers give no [M + 73] + ions, but do give [M + H]+ ions, which allow the determination of the relative molecular mass. These [M + H]+ ions result primarily from proton transfer reactions from the dominant fragment ion, [(CH3)3SiOH2]+ with the ether. Methyl phenyl ether gives only [M + 73]+ adduct ions, by a bimolecular addition of the trimethylsilyl ion to the ether, not by the two-step process found for the di-n-alkyl ethers. Ethyl phenyl ether gives [M + 73]+ by both the two-step process and the bimolecular addition. Although the mass spectra of the alkyl etherr are temperature-dependent, the sensitivities of the di-alkyl ethers and ethyl phenyl ether are independent of temperature. However, the sensitivity for methyl phenyl ether decreases significantly with increasing temperature.  相似文献   

12.
Long‐chain ferulic acid esters, such as eicosyl ferulate ( 1 ), show a complex and analytically valuable fragmentation behavior under negative ion electrospay collision‐induced dissociation ((?)‐ESI‐CID) mass spectrometry, as studied by use of a high‐resolution (Orbitrap) mass spectrometer. In a strong contrast to the very simple fragmentation of the [M + H]+ ion, which is discussed briefly, the deprotonated molecule, [M – H]?, exhibits a rich secondary fragmentation chemistry. It first loses a methyl radical (MS2) and the ortho‐quinoid [M – H – Me]‐? radical anion thus formed then dissociates by loss of an extended series of neutral radicals, CnH2n + 1? (n = 0–16) from the long alkyl chain, in competition with the expulsion of CO and CO2 (MS3). The further fragmentation (MS4) of the [M – H – Me – C3H7]? ion, discussed as an example, and the highly specific losses of alkyl radicals from the [M – H – Me – CO]‐? and [M – H – Me – CO2]‐? ions provide some mechanistic and structural insights.  相似文献   

13.
Six alkyl alcohols were studied using thermospray mass Spectrometry. Whereas the dominant ion in the spectrum up to a repeller potential of 120 V was [M + NH4]+, above that potential [M + H]+ and fragment ions appeared. The fragments observed were largely due to hydrogen release from alkyl ions ([CnH2n+1]+ – H2 → [CnH2n-1]+) and loss of water or some other stable molecule from the same species. The results are compared with those from ionization of the same alcohols under electron impact and photoionization conditions and with results obtained for methanol under thermospray conditions.  相似文献   

14.
The configuration at C-2 and C-4 in the molecules of 2-methyl- and 1,2-dimethyl-4-vinylethinyl(n-butyl)-4-hydroxyperhydroquinolines was determined by mass spectrometry. The principal conclusions concerning the stereochemistry were made on the basis of differences in the values of the I[M?15]+/I[M]+·, I[M?17]+/I[M]+·, I[M?43]+/I[M]+· and I[M?57]+/I[M]+· ratios in the mass spectra of the epimeric vinylethinylic alcohols, and of the I[M?15]+/I[M]+· and I[M?15]+/I[M]+· ratios in the case of the n-butylic alcohols.  相似文献   

15.
The dependence of ion intensity ratios of competing α-fissions on electron beam energy, source temperature, influences of electron multiplier and ion optics, were investigated. A mass discriminating effect of the ion optics was found. It is shown that the ion mass effect found on tertiary aliphatic alcohols is real. So far as it is known today, this effect is pronounced in such aliphatic compounds which exhibit no molecular ion peak under electron impact and form very stable ions by α-fission. Two alternative explanations are proposed.  相似文献   

16.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

17.
The fragmentation of the title compounds on electron impact has been studied and the major processes interpreted. The base peak invariably appears at [M ? 43]+ whose origin from the butyl chain has been traced with the help of metastable ion studies and accurate mass measurements. Loss of methyl cyanide, involving the decomposition of the pyrazole moiety, is observed only from the fragment ions.  相似文献   

18.
The field desorption mass spectral behavior of several hydroxyammoniocarboxylates was studied at both low and high emitter heating currents. The molecular weights of these thermally unstable compounds can be determined directly from the low emitter current (<10 mA) field desorption mass spectra, which are dominated by [xM+H]+ and [xM+H? CO2]+ ions (1?x?4). At higher emitter currents (~20 mA), pyrolytic processes become important. These include intermolecular transfer of a single alkyl group yielding [M+alkyl]+ ions, intermolecular isomerization producing a hydroxyaminoester as the rearranged form of the molecule, and elimination of alcohol from the rearranged molecule, producing γ or δ lactones. The distribution of pyrolysis products does not depend significantly on the length of the carboxylate chain, but does appear to depend upon the chain length of the alkyl substituent on nitrogen. The spectra of molecules containing a long alkyl substituent (e.g. C14H29, C22H45) exhibit relatively high levels of [M+alkyl]+ ions, unlike the spectra of compounds which contain only methyl or ethyl substituents on the quaternary nitrogen. These latter compounds exhibit a relatively greater tendency toward lactone formation.  相似文献   

19.
A mass-spectrometric study of 2- and 4-azafluorenones and their mono- and polymethyl derivatives showed that the presence of a methyl group in the benzene ring leads to a sharp increase in the relative intensity of the [M — H]+ ion peak. In contrast to the fragmentation of 2- and 4-azafluorenes, the mass spectra of monomethyl-substituted compounds do not contain an [M — CH3]+ fragment; this is probably associated with expansion of the pyridine or benzene ring to a seven-membered ring in the step involving the formation of the molecular ion due to inclusion of the methyl group. The intensity of the [M — CO]+ ion peak in the mass spectra of the 4-azafluorenones is higher by a factor of two with respect to the 2-azafluorenone isomers, and the [M — HCN]+ and [M — H, -HCN]+ ion peaks observed in the mass spectra of 2-azafluorenones are absent in them.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 89–95, January, 1979.  相似文献   

20.
The mass spectral fragmentations of methyl mono- and dichlorobutanates have been studied. Deutrium labelling and metastable ion analysis were used to elucidate the fragmentation mechanisms. The molecular ion peaks of the esters are weak and show only in the spectra of the monochloro isomers. A McLafferty rearrangement gives the base peaks in the spectra of methyl 2-chloro-, 4-chloro- and 4,4-dichlorobutanoate; α-cleavage, [COOCH3]+, in methyl 2,2- and 2,4-dichlorobutanoate; [M? Cl]+, in methyl 3-chlorobutanoate; [M? Cl? HCl]+, in methyl 3,4-dichlorobutanoate; [M? Cl? CH2CO]+, in methyl 3,3-dichlorobutanoate and [M? Cl? COOCH3], in methyl erythro- and threo-2,3-dichlorobutanoate. The mass spectra of the stereoisomers are nearly identical, the loss of a chlorine atom and the McLafferty rearrangement giving the higher peaks in the spectrum of the threo form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号