首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Androstanes with a trans connected A/B ring system and hydroxy groups in positions 3, 7 and 17 show in their mass spectra key ions of mass 99 and 178. The ion of mass 99 contains the carbon atoms of ring D, and the ion of mass 178 those of the A/B ring system and C-11. If the rings A and B are cis connected, the ion of mass 178 is produced with much lower abundance and the ion of mass 99 is almost absent. The α or β position of a hydroxy group in position 7 can be deduced from the spectra of corresponding trimethylsilyl derivatives: a fragment of [M ? 131] dominated by presence of a 7α-trimethylsilyl ether group and trans connection of the A/B ring system. Determination of the configuration of the hydroxy group in position 3 is very difficult. Analogous fragments are observed in the spectra of the corresponding 7, 17-dihydroxyandrostan-3-ones.  相似文献   

2.
E. Zietz  G. Spiteller 《Tetrahedron》1974,30(4):585-596
Mass spectrometric degradation reactions of steroids with hydroxy groups in positions 12 and 17β depend on the configuration of the C-12 hydroxy group. In compounds with a 12α-hydroxy group, this group and the hydrogen in position 17α is eliminated as H2O. This reaction is followed by loss of a methyl radical. In the isomers with a 12β-hydroxy group this reaction is not possible. Here the loss of carbon 15–17 dominates the production of an ion by loss of two molecules of water. Key ions of mass 97 as well as M-44 and M-74 ions are produced by 17 keto steroids with a hydroxy group in position 12. If the rings A and B are cis-connected less specific degradation reactions are observed.  相似文献   

3.
13C labelling has been used to study isoquinoline molecular ions undergoing breakdown by HCN elimination in a mass spectrometer. For otherwise stable ions caused to fragment by collisional activation, there is no skeletal rearrangement prior to HCN loss. Of the ions formed by 70 eV electron impact, 69% of those which fragment in the ion source by HCN loss retain their structural integrity, as do 44% of the metastable ions. Of the ions that eliminate HCN without prior arrangement, approximately two-thirds eliminate C-1 and one-third eliminate C-3. Critical energies are reported for the elimination of HCN from pyridine and isoquinoline molecular ions.  相似文献   

4.
An ion formed by loss of 56 mass units from the molecular ion is often seen in mass spectra of trimethylsilyl ethers of C19 and C21 steroids having a 3β-hydroxy-Δ5 structure and an oxo group at C-17 or C-20. The nature of this fragment was investigated by the use of perdeuteriotrimethylsilyl ether derivatives and of [4-14C], [3-18O], [4,4-2H2] and [2,2,4,4-2H] labelled derivatives of 3β-hydroxy-5-androsten-17-one and 3β-hydroxy-5-pregnen-20-one. Evidence is presented to show that the neutral fragment of mass 56 is composed of carbon atoms 1, 2 and 3, the oxygen at C-3 and four hydrogen atoms. During the fragmentation process, the trimethylsilyl group and one of the hydrogens at C-2 are transferred to the fragment that carries the charge.  相似文献   

5.
5β-androstan-3-ones carrying a 6α-OH group show in their mass spectra a key-ion indicating the loss of water and C-1 to C-4 as C4H5O? particle. 6β-OH isomers lose instead C-1 to C-4 in form of C4H7O?.In 6α-hydroxy-androstan-3-ones differentiation between the connection of the A/B-ring system is possible, because in 5α-isomers the loss of C-3 to C-7 occurs as a C5H6O2 particle, while the 5β-isomers lose the same C atoms as a C5H7O? unit.Compounds with a 6β-OH group in an A/B trans connected ring system show a tendency for thermal water elimination. After rearrangement of the double bond in 4,5 position the typical fragments for 3-keto-Δ4-steroids are obtained.Occasionally a strong influence of a 6-OH group on fragmentation reactions in the D-ring system is observed: The presence of a 6α-OH group in an androstan-3,17-dione enhances the loss of C-16 and C-17 in the form of acetaldehydenol. Also the connection of the A/B-ring system may have a considerable influence on this type of reaction: In 6,17β-dihydroxy-androstan-3-ones only by trans connection of the A/B-ring system, C-16 and C-17 are lost with high probability after water elimination.  相似文献   

6.
The CH4 chemical ionization (CI) spectra of several keto-steroids are reported as well as the H2 and C3H8CI spectra of a few keto-steroids. [M + H ? H2O]+ is an abundant ion in the CH4CI spectrum of 5α-androstane-17-one and the water loss from the [M + H]+ ions does not involve the hydrogens on C-18 and only involves the C-16 hydrogens to about 10%. The major loss process has not been determined.3-Keto and 17-Keto steroids are readily distinguished by their CH4CI spectra. The effectiveness of substituents for directing attack by [CH5]+ and [C2H5]+ can be estimated:carboxyl > methoxy ? carbonyl > bromo ? chloro > hydroxy. Significant differences are observed in the H2CI spectra of two 5α-vs. 5β-steroids. Propane CI Spectra are similar to methane CI spectra, but show generally less fragmentation.  相似文献   

7.
Mass spectrometric identification and characterization of growth-promoting anabolic-androgenic steroids in biological matrices has been a major task for doping control as well as food safety laboratories. The fragmentation behavior of stanozolol, its metabolites 17-epistanozolol, 3'-OH-stanozolol, 4alpha-OH-stanozolol, 4beta-OH-stanozolol, 17-epi-16alpha-OH-stanozolol, 16alpha-OH-stanozolol, 16beta-OH-stanozolol, as well as the synthetic analogues 4-dehydrostanozolol, 17-ketostanozolol, and N-methyl-3'-OH-stanozolol, was investigated after positive electrospray ionization and subsequent collision-induced dissociation utilizing a quadrupole-linear ion trap and a novel linear ion trap-orbitrap hybrid mass spectrometer. Stable isotope labeling, H/D-exchange experiments, MS3 analyses and high-resolution/high mass accuracy measurements of fragment ions were employed to allow proposals for charge-driven as well as charge-remote fragmentation pathways generating characteristic product ions of stanozolol at m/z 81, 91, 95, 105, 119, 135 and 297 and 4-hydroxylated stanozolol at m/z 145. Fragment ions were generated by dissociation of the steroidal A- and B-ring retaining the introduced charge within the pyrazole function of stanozolol and by elimination of A- and B-ring fractions including the pyrazole residue. In addition, a charge-remote fragmentation causing the neutral loss of methanol was observed, which was suggested to be composed by the methyl residue at C-18 and the hydroxyl function located at C-17.  相似文献   

8.
An analytical strategy using fast atom bombardment (FAB) ionization and tandem mass spectrometry has been developed to determine the molecular weight and major fragment ions, and to provide limited structural characterization of low picomole levels of carcinogen-nucleoside adducts. This strategy consists of three main components: (1) the sensitivity for analysis by FAB combined with mass spectrometry is increased via chemical derivatization; (2) the nucleoside adducts are selectively detected by using constant neutral loss scans; and (3) structurally characteristic fragments are obtained by using daughter ion scans. Trimethylsilyl derivatized arylamine-nucleoside adducts have been detected at levels as low as a few picomoles by using this approach. After experimental determination of the mass of the BH 2 + fragment ion, daughter ion spectra have been used to probe the structure specificity associated with collision-activated decomposition of this fragment. With model C-8 substituted arylamine adducts [N-(deoxyguanosin-8-yl)-4-aminobiphenyl, N-(deoxyadenosin--yl)-4-aminobiphenyl, and N-(deoxyguanosin-8-yl)-2-aminofluorene], nucleoside-specific and carcinogen-specific fragmentation have been observed in daughter ion spectra.  相似文献   

9.
2-Acetoxychalcones decompose under electron impact conditions by loss of an acetoxy fragment to form flavylium ions. The effect is restricted to the ortho position and is reduced after hydrogenation of the chalcone double bond. The intense flavylium ion originates—as shown by specific labelling with 18O—from two different fragmentation lines: (a) direct loss of an acetoxy radical by cleavage of the phenolic Ar? O bond and (b) sequential elimination of ketene and a hydroxy radical.  相似文献   

10.
Fatty acids with a hydroxyl moiety at the C-3 position are found widely in bacterial lipids, but only rarely in mammalian lipids. The mass spectra of the methyl ether derivative of these hydroxy acids exhibit an intense ion at m/e 75, rather than the rearrangement ion at m/e 74 more typical of fatty acid methyl esters. The mass spectrometric behavior of several 3-methoxy fatty acid methyl esters were studied, and the origin of the unique ion at m/e 75 was established using 18O and 2H labeled analogs and metastable ion transitions. this ion was shown to arise from the loss of ketene from the 3,4 cleavage ion at m/e 117.  相似文献   

11.
Gas chromatography/mass spectrometry and selective derivatisation techniques have been used to identify urinary metabolites of methyltestosterone following oral administration to the greyhound. Several metabolites were identified including reduced, mono‐, di‐ and trihydroxylated steroids. The major metabolites observed were 17α‐methyl‐5β‐androstane‐3α‐17β‐diol, 17α‐methyl‐5β‐androstane‐3α,16α,17β‐triol, and a further compound tentatively identified as 17α‐methyl‐5z‐androstane‐6z,17β‐triol. The most abundant of these was the 17α‐methyl‐5β‐androstane‐3α,16α,17β‐triol. This metabolite was identified by comparison with a reference standard synthesised using a Grignard procedure and characterised using trimethylsilyl (TMS) and acetonide‐TMS derivatisation techniques. There did not appear to be any evidence for 16β‐hydroxylation as a phase I metabolic transformation in the greyhound. However, significant quantities of 16α‐hydroxy metabolites were detected. Selective enzymatic hydrolysis procedures indicated that the major metabolites identified were excreted as glucuronic acid conjugates. Metabolic transformations observed in the greyhound have been compared with those of other mammalian species and are discussed here. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Fruitbodies of the genus Hygrophorus (Basidiomycetes) contain a series of anti-biologically active compounds. These substances named hygrophorones possess a cyclopentenone skeleton. LC/ESI-MS/MS presents a valuable tool for the identification of such compounds. The mass spectral behaviour of typical selected members of this group under positive and negative ion electrospray conditions is discussed. Using the ESI collision-induced dissociation (CID) mass spectra of the [M + H]+ and [M - H]- ions, respectively, the compounds can be classified with respect to the substitution pattern at the cyclopentenone ring and the type of oxygenation at C-6 (hydroxy/acetoxy or oxo function) of the side chain. The elemental composition of the fragment ions was determined by ESI-QqTOF measurements. Thus, in case of the negative ion CID mass spectra an unusual loss of CO2 from the deprotonated molecular ions could be observed.  相似文献   

13.
Reactive Blue 19 (RB 19), its reactive form (RB 19-VS) and its hydrolyzed form (RB 19-OH) were examined using liquid secondary ion mass spectrometry/tandem mass spectrometry (LSIMS/MS/MS) in the negative-ion mode under low-energy collision conditions (240–300 eV). Structurally characteristic fragment ions were obtained, none of which has been previously reported for these reactive dyes. Among the ions obtained were SO3? ions, ions due to central amino cleavage and reactive group cleavage, and ions due to loss of SO3 and SO2. Possible pathways for the formation of product ions are proposed. The structural information obtained should help to characterize and identify reactive dyes better.  相似文献   

14.
A method for the analysis of neutral oxosteroids by electrospray mass spectrometry is described. The oxosteroids are converted into their oximes by treatment with hydroxyammonium chloride in aqueous methanol. Intense peaks corresponding to protonated oxime molecules are observed in nano-electrospray mass spectra. The detection limits for the oximes of progesterone, pregnenolone and dehydroepiandrosterone were 2.5, 5 and 25 pg/microL, respectively, approximately 20 times lower than for the underivatised steroids. The signal intensities were proportional to the concentration of the steroids in the range of 500 to 2.5 pg/microL. Fragmentation by collision-induced dissociation (CID) was studied using oximes of 28 model steroids carrying an oxo group at C-3, C-17 or C-20. Some of the steroid oximes were labelled with deuterium or (15)N. Fragment ions were observed which yielded useful structural information. Upon CID, protonated oximes of 3-oxo-Delta(4)-steroids produced abundant ions by cleavage through the B-ring and by loss of the side chain, while protonated oximes of saturated 3-oxosteroids did not give abundant ions by cleavage through the B-ring. Protonated oximes of 20-oxosteroids unsubstituted at C-21, C-17 or C-16 produced a characteristic ion at m/z 86 containing the side chain, C-16 and C-17. Protonated oximes of steroids containing only a 17-oxo group gave fewer ions of diagnostic value. Coupled with the selective isolation of steroid oximes from a biological matrix this method of derivatisation and CID may be used for the analysis of neutral oxosteroids in biological samples.  相似文献   

15.
The ion-molecule reactions of dimethyl ether ions CH3OCH3 + and (CH3OCH3)H+, and four- to seven-membered ring lactams with methyl substituents in various positions were characterized by using a quadrupole ion trap mass spectrometer and a triple-quadrupole mass spectrometer. In both instruments, the lactams were protonated by dimethyl ether ions and formed various combinations of [M + 13] +, [M + 15] +, and [M + 45] + adduct ions, as well as unusual [M + 3] + and [M + 16] + adduct ions. An additional [M + 47] + adduct ion was formed in the conventional chemical ionization source of the triple-quadrupole mass spectrometer. The product ions were isolated and collisionally activated in the quadrupole ion trap to understand formation pathways, structures, and characteristic dissociation pathways. Sequential activation experiments were performed to elucidate fragment ion structures and stepwise dissociation sequences. Protonated lactams dissociate by loss of water, ammonia, or methylamine; ammonia and carbon monoxide; and water and ammonia or methylamine. The [M + 16] + products, which are identified as protonated lactone structures, are only formed by those lactams that do not have an N-methyl substituent. The ion-molecule reactions of dimethyl ether ions with lactams were compared with those of analogous amides and lactones.  相似文献   

16.
The fragmentation of the dimethyl and diethyl esters of maleic and fumaric acids have been studied as a function of the internal energy of the molecular ions using charge exchange techniques and metastable ion studies in combination with isotopic labelling. The dimethyl ester molecular ions show distinctive behaviours at both low and high internal energies, indicating that interconversion of the molecular ions does not occur. The fumarate molecular ion fragments by elimination of CH2O and (CO2 + CH3) in the metastable ion time-frame, while the maleate ester fragments primarily by loss of CH3O. At higher internal energies both molecular ions fragment primarily by loss of CH3O but the fragment ion from the maleate ester shows a greater stability, presumably because it assumes the cyclic cationated maleic anhydride structure. The diethyl maleate and diethyl fumarate molecular ions show identical metastable ion characteristics; in addition the [COS]+· charge exchange mass spectra are very similar. These results indicate that low-energy molecular ions interconvert. At higher internal energies interconversion does not occur, and, although both moiecular ions fragment by loss of C2H5O, the resultsint fragment ions show different stabilities and fragmentation reactions.  相似文献   

17.
纪三郝  巨勇  肖强  赵玉芬 《中国化学》2006,24(7):943-949
Novel steroidal phosphoramidate conjugates of 3'-azido-2',3'-dideoxythymidine(AZT)and amino acid esterswere synthesized and determined by positive and negative ion electrospray ionization mass spectrometry.The MSfragmentation behaviors of the steroidal phosphoramidate conjugates have been investigated in conjunction withtandem mass spectrometry of ESI-MS/MS.There were three characteristic fragment ions in the positive ion ESImass spectra,which were the Na adduct ions with loss of steroidal moiety,amino acid ester moiety from pseudomolecular ion(M Na)~ ,and the phosphoamino acid methyl ester Na adduct ion by α-cleavage of the phosphora-midate respectively.The main fragment ions in negative ion ESI mass spectra were the ion(M-HN_3)~-,the ion(M-AZT-H)~-,and the ion(M-steroidal moiety-H)~- besides the pseudo molecular ion(M-H)~-.Thefragmentation patterns did not depend on the attached amino acid ester moiety.  相似文献   

18.
The appearance of [MH-30]+ ions in the chemical ionization mass spectra of aromatic nitro compounds may be due to their initial reduction to the corresponding amines within the ion source. Aromatic nitroso compounds may be similarly reduced to yield [MH-14]+ ions. The hydroxy derivatives of the nitroso compounds yield further anomalous ions at [MH-16]+ probably due to the reduction of the hydroxy groups.  相似文献   

19.
The mass spectra of tetronic acid and of a number of its derivatives are recorded and discussed. Where necessary, the composition of the fragment ions has been checked by high resolution mass measurements. Fragmentation of the molecular ion is explained in terms of the rupture of a bond attached to C-4, and the predominant routes for many of the compounds can be explained on the basis of two schemes, the first involving preliminary ketonisation of the molecular ion, followed by elimination of carbon monoxide, the second involving rupture of the C-4? R3 bond prior to elimination of carbon monoxide. Special structural features, however, provide alternative routes.  相似文献   

20.
The chemical ionization mass spectra of several hydroxy steroids were obtained using methane as the reactant gas. The spectra are much less complex than the electron ionization spectra and little fragmentation of the steroid nucleus is observed. The major fragment ions involve the loss of water from [M + H]+. A 3-keto group in the steroids was characterized by an abundant [M + C2H5]+ ion. 5α- and 5β-Dihydrotestosterone could be distinguished by their spectra, with H2 as the reactant gas by marked differences in amounts of [M + H]+, [M + H ? H2O]+ and [M + H ? 2H2O]+. Substituted 3α-X-, 17 β-ol compounds, (X = Cl, Br) were also studied to obtain relative amounts of protonation at these sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号