首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用基于密度泛函理论的第一性原理的方法, 对Au掺杂[100]方向氢钝化硅纳米线(SiNWs)不同位置的形成能、能带结构、态密度及磁性进行了计算, 考虑了Au占据硅纳米线的替代、四面体间隙和六角形间隙的不同位置. 结果表明: Au偏爱硅纳米线中心的替代位置. Au掺杂后的硅纳米线引入了杂质能级, 禁带宽度变窄. 对于Au替代掺杂, 杂质能级主要来源于Au的d、p态和Si的p态, 由于Au的d态和Si的p态的耦合, Au掺杂硅纳米线具有铁磁性. 对于间隙掺杂, 杂质能级主要来源于Au的s态, 是非磁性的. 另外, 根据原子轨道和电子填充模型分析了其电子结构和磁性.  相似文献   

2.
The ab initio projector augmented wave (PAW) method is used to calculate the electronic structure of Li-doped cadmium oxide with NaCl structure. The preference energy for Li atoms in interstitial sites and the energy of impurity oxidation are calculated. Interstitial positions for Li atoms are shown to be stable under thermodynamic equilibrium, but Li atoms can substitute Cd atoms in presence of vacancies in the oxygen sublattice. We consider the following complexes: one Li atom in the interstitial site and the other Li atom in Cd position; one Li atom in Cd position and one oxygen vacancy; a pair of oxygen vacancies; and show that these complexes are formed to have the shortest possible distance between their components. The band gap substantially decreases when Li atoms occupy interstitial sites to explain considerable increase of experimental conductivity.  相似文献   

3.
《Polyhedron》2005,24(3):383-390
New organometallic tin(IV) complexes of the empirical formula Sn(NNS)Ph2Cl (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by IR, electronic, 1H NMR and ES mass spectroscopic techniques. The molecular structures of the 2-quinolinecarboxaldehyde Schiff base of S-methyldithiocarbazate (Hqaldsme) and its diphenyltin(IV) complex, Sn(qaldsme)Ph2Cl, have been determined by X-ray diffraction. In the solid state, the ligand remains as the thione tautomer in which the dithiocarbazate chain adopts an E,E configuration and is almost coplanar with the quinoline ring. The Sn(qaldsme)Ph2Cl complex crystallizes in two distinctly different conformationally isomeric forms, each having the same space group but different lattice parameters. X-ray analysis shows that in each polymorph, the tin atom adopts a distorted octahedral geometry with the Schiff base coordinated to it as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The two phenyl groups occupy axial positions and the chloride ligand occupies the sixth coordination position of the tin atom. The deprotonated ligand adopts an E,E,Z configuration in the complex.  相似文献   

4.
Using the first-principles method with the generalized gradient approximation, the authors have studied the structural and electronic properties of Al(12)X(+) (X=C, Si, Ge, Sn, and Pb) clusters in detail. The ground state of Al(12)C(+) is a low symmetry C(s) structure instead of an icosahedron. However, the Si, Ge, Sn, and Pb atom doped cationic clusters favor icosahedral structures. The ground states for Al(12)Si(+) and Al(12)Ge(+) are icosahedra, while the C(5nu) structures optimized from an icosahedron with a vertex capped by a tetravalent atom have the highest binding energy for Al(12)Sn(+) and Al(12)Pb(+) clusters. The I(h) structure and the C(5nu) structure are almost degenerate for Al(12)Ge(+), whose binding energy difference is only 0.03 eV. The electronic properties are altered much by removing an electron from the neutral cluster. The binding strength of a valence electron is enhanced, while the binding energy of the cluster is reduced much. Due to the open electronic shell, the band gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital are approximately 0.3 eV for the studied cationic clusters.  相似文献   

5.
利用EXAFS对固相合成的PbWO4多晶的W原子的近边结构进行研究,结果表明PWO晶体掺镧15% m/o后,其第一配位层的配位数增加,同时W-O键长变短,说明晶体中存在间隙氧离子。最后,讨论了间隙氧离子的结构起因以及其在发光机制方面的作用。  相似文献   

6.
Growth reactions based on a newly developed deuterium-stabilized Sn hydride [(Ph)SnD(3)] with Ge(2)H(6) produce a new family of Ge-Sn semiconductors with tunable band gaps and potential applications in high-speed, high-efficiency infrared optoelectronics. Metastable diamond-cubic films of Ge(1-x)Sn(x) alloys are created by chemical vapor deposition at 350 degrees C on Si(100). These exhibit unprecedented thermal stability and superior crystallinity despite the 17% lattice mismatch between the constituent materials. The composition, crystal structure, electronic structure, and optical properties of these materials are characterized by Rutherford backscattering, high-resolution electron microscopy, and X-ray diffraction, as well as Raman, IR, and spectroscopic ellipsometry. Electron diffraction reveals monocrystalline and perfectly epitaxial layers with lattice constants intermediate between those of Ge and alpha-Sn. X-ray diffraction in the theta-2theta mode shows well-defined peaks corresponding to random alloys, and in-plane rocking scans of the (004) reflection confirm a tightly aligned spread of the crystal mosaics. RBS ion-channeling including angular scans confirm that Sn occupies substitutional lattice sites and also provide evidence of local ordering of the elements with increasing Sn concentration. The Raman spectra show bands corresponding to Ge-Ge and Sn-Ge vibrations with frequencies consistent with random tetrahedral alloys. Resonance Raman and ellipsometry spectra indicate a band-gap reduction relative to Ge. The IR transmission spectra suggest that the band gap decreases monotonically with increasing Sn fraction. The synthesis, characterization, and gas-phase electron diffraction structure of (Ph)SnD(3) are also reported.  相似文献   

7.
Li B  Corbett JD 《Inorganic chemistry》2008,47(9):3610-3616
These compounds were synthesized by high-temperature reactions of the elements in welded Ta tubes and characterized by X-ray diffraction methods and linear muffin-tin orbital (LMTO) calculations. AAu4Sn6 (A = K, Rb) have a new structural type (Fddd, Z = 8), and KAu3Sn3 (Pmmn, Z = 2) is isostructural with SrAu3In3. Both orthorhombic structures contain similar condensed K@Au10Sn10 polyhedral building blocks, which can be described as overall 6-8-6 arrangements of planar rings or, alternatively, as hexagonal prisms centered by K and augmented about the waists by 8-rings of Au and Sn. However, the 3D Au-Sn networks differ appreciably in both composition and the modes of condensation. In KAu3Sn3, the prisms stack by sharing both hexagonal faces with like neighbors along a, whereas those in KAu4Sn6 condense in a complex zigzag network. Compared with related indium systems, the structure change from KAu4In6 ( P_6m2, Z = 1) to KAu4Sn6 apparently illustrates the effect of complex factors such as atom size and valence electron counts on structure, whereas the SrAu3In3 and KAu3Sn3 pair are isotypic. Both compounds are Pauli-paramagnetic and inert to water at room temperature for several days. Tight-binding electronic structure (LMTO) calculations emphasize the dominance and strength of the heteroatomic Au-Sn bonding.  相似文献   

8.
Crystal structures of nonstoichiometric La(Ni, Sn)5 x (x = 0.1~0.4) alloysprepared by different methods were investigated by using powder X-ray diffraction and Rietveldrefinement analysis. Space group of this type of alloys belongs to P6/mmm, in which Sn onlyoccupies the 3g sites. It has been demonstrated that some of the la sites of the nonstoichiometricalloy are replaced by the Ni-Ni dumb-bells which have a strong correlation with the anisotropicthermal parameter B33. The preparation methods have an effect on the number of dumb-bells thatcan substitute the l a sites. It was found that the annealed alloys have more Ni-Ni dumb-bells inthe structure than the rapid solidified and as-cast alloys have while still keep good crystallinity.  相似文献   

9.
A chemical analysis and detailed structural characterization, using X-ray single crystal and neutron powder diffraction, of the binary lithium-tin compound "Li(4.4)Sn" is presented. Phase analyses and subsequent structural refinements result in the reformulation of "Li(4.4)Sn" as Li(17)Sn(4). The lithium-rich binary phase crystallizes with a complex cubic structure in the space group Ffourmacr;3m, with a = 19.6907(11) A, Z = 20. The improved crystal structure determination indicates well-defined lithium atom positions, some of which differ from those previously reported. The nearly Zintl phase Li(17)Sn(4) exhibits poor metallic behavior similar to that of heavily doped semiconductors. Comparisons of the refined crystal structure with previously reported X-ray crystal structures associated with "Li(4.4)Sn" are discussed.  相似文献   

10.
Using the non-equilibrium Green functions (NEGF) and density functional theory (DFT) method, a calculation of the transport properties of the Au-di-thiol-benzene (DTB) sandwich system was performed. The results show that both the remaining H atom at the end of the DTB molecule and the increased S-Au surface distance will decrease the electronic transport significantly. The applied bias would change the symmetry of the system electronic structure. Our result was qualitatively consistent with the experiment, but there existed a gap of three orders of magnitude, and this was attributed to the different coupling geometry between the theoretical work and the experiment.  相似文献   

11.
nBu2Sn[O2CCH2CH(4-ClC6H4)Ge(OCH2CH2)3N]2.H2O(Mr=1053.66) is an air-stable compound which crystallizes in the monoclinic space group C2/c with a=21.182(5), b=12.174(3), c=17.108(4) , β=99.59(2)°, V=4350(3) 3, Z=4, F(000)=2104, μ=2.104 mm-1. The refinement of structure with I≥3σ(I) for 1819 reflections converged at R=0.045. The coordination geometry around the Sn atom is best described as an askew-pentagonal bipyramid, in which four carboxylate oxygen atoms( Sn(1)-O(5), Sn(1)-O(5a)=2.099 and Sn(1)-O(4), Sn(1)-O(4a)=2.158 ) and an oxygen atom from an aqua ligand comprise the pentagonal plane, with two butyl groups occupying axial positions.  相似文献   

12.
Two new diorganotin(IV) derivatives of 2,6‐pyridinedicarboxylic acid, {[Ph2Sn(2,6‐C5H3N)(COO)2][Na(2,6‐C5H3N)(COOH) (COO)(CH3OH)2]} ( 1 ) and [Me2Sn(2,6‐C5H3N)(COO)2(H2O)]H2O ( 2 ) were synthesized by the reaction of Ph3SnCl and PhMe2SnI with 2,6‐pyridinedicarboxylic acid, respectively in the presence of sodium methoxide or potassium iso‐propoxide. The prepared compounds were characterized by mass spectrometry, IR, 1H, 13C and 119Sn NMR spectroscopies. The molecular structures of both complexes were determined by a single‐crystal X‐ray analysis. The X‐ray structure revealed pentagonal bipyramidal geometry around the tin atom for compound 1, which is incorporated with a hexacoordinated monosodium derivative of 2,6‐pyridinedicarboxylic acid. Complex 2 adopts a monomeric structure with two carboxylate oxygen atoms coordinated to tin in monodenate form from equatorial positions, and the coordination number is raised to six as the oxygen of water and pyridine nitrogen occupies the other equatorial positions of octahedron. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
1INTRODUCTIONThestudiesoforganotincompoundsareofcurentinterestowingtotheirwiderangeofapplications〔14〕suchasbiocidesandhomogen...  相似文献   

14.
An anomalous charge density distribution of La atom encapsulated in a C82 cage has been revealed for La@C82 by the maximum entropy method (MEM)/Rietveld analysis using synchrotron powder diffraction data. The obtained La atom charge density shows a feature almost like a bowl or a hemisphere, suggesting that the La atom has a giant motion (large amplitude motion) inside the C82 cage at room temperature. From the obtained MEM charge density, the main results are (1) the cage structure of La@C82 (I) has C2V symmetry; (2) La atom locates at an off-centered position adjacent to a six-membered ring of the carbon cage; (3) the nearest La–C distance is 2.55(8) and (4) the amount of charge transfer from the La atom to the carbon cage is about 3.2 e, which corresponds to the nominal electronic structure, La3+@C823−.  相似文献   

15.
Thermal carbosilylation of endohedral dimetallofullerene La(2)@I(h)-C(80) with silirane (silacyclopropane) is reported herein for the first time. Two diastereomers of the carbosilylated La(2)@I(h)-C(80) have been isolated and characterized. The fascinating molecular structure of one diastereomer of the carbosilylated derivatives has been determined unambiguously using X-ray crystallographic analysis. Detailed characteristics of the molecular structures including their metal atom movements have also been revealed using NMR spectroscopic studies and computational calculations. Results revealed that two La atoms move dynamically inside the carbon sphere. Furthermore, electrochemical study has demonstrated that carbosilylation is effective to fine-tune the La(2)@I(h)-C(80) electronic properties.  相似文献   

16.
<正> In this work, with the analysis on MO and electronic structure for a series of heteronuclear cluster with cubane type (Mo4S1 )xMn1(x=1.2. M = Cu, W, Ni, Sb, Mo, Sn, Cu2) we found that it is with the multiple center d-pir orbitals that the ligand Mo3S44+ bonds to the M atom to form these class clusters. It is revealed that the charges transfer from the M atom to Mo atom of the ligand Mo3S44+ and its relationship with the MC (multiple center) d-pπ orbitals. Based on the charge transfer the electronic spectrum and the magnetic property of some cubane clusters have been discussed.  相似文献   

17.
A series of new five-coordinated ionic organotin(IV) complexes with general formula [Q][Me2Sn(μ2-SCH2COO)Cl](Q = diethylammonium, triethylammonium, di-i-propylammonium, tripropylammonium, tri-n-butylammonium, pyrimidium, 3-picolinium, methylphenylammonium, dimethylphenylammonium) were synthesized by the reaction of mercaptoacetic acid with dimethyltin dichloride in the presence of an organic base. These complexes have been characterized by elemental analyses, IR and 1H NMR spectroscopies. The crystal structure of [(n-Pr)3NH][Me2Sn(μ2-SCH2COO)Cl] was determined by X-ray crystallography. The structure consists of an anion part, and a tri-n-propylammonium cation part as a counterion. The tin atom has a distorted cis-tbp geometry with two carbon and one sulfur atoms occupying the equatorial positions and the O atom and Cl atom occupying the axial positions. The organotin anion and its counterion are connected through a hydrogen bond between the N atom in the ammonium and the O atom of the carbonyl group with a N-O length of 2.766 Å.  相似文献   

18.
In this study, the adsorption of Sn atom at various sites on the MgO(100) surface was characterized using a theoretical approach based on density functional theory calculations. Both regular adsorption centers (O2? and Mg2+) and defects (such as neutral and charged O and Mg vacancies) were considered. Several key parameters for these sites with the adsorbed Sn atom were determined to provide its geometric, energetic, and electronic characterization. The interaction between Sn and the Mg vacancy sites is very strong and is associated with a relatively small distance of the adsorbed Sn atom from the surface and with a large electronic charge transfer from Sn to the surface. A much smaller strength of Sn atom adsorption is observed for the O vacancies and regular sites. Among them, the Fs0 center binds the Sn atom strongest and, in consequence, this atom acquires a significant amount of electronic charge.  相似文献   

19.
Ce has been found experimentally to be preferentially incorporated into the C82 isomer of C2v symmetry as have other lanthanoids in M@C82 (M = La, Pr, Nd, etc.). We have investigated the underlying reason for this preference by calculating structural and electronic properties of Ce@C82 using density functional theory. The ground-state structure of Ce@C82 is found to have the cerium atom attached to the six-membered ring on the C2 axis of the C82-C2v cage, and the encapsulated atom is found to perturb the carbon cage due to chemical bonding. We have found Ce to favor this C2v chemisorption site in C82 by 0.62 eV compared to other positions on the inside wall of the cage. The specific preference of the metal atom to this six-membered ring is explained through electronic structure analysis, which reveals strong hybridization between the d orbitals of cerium and the pi orbitals of the cage that is particularly favorable for this chemisorption site. We propose that this symmetry dictated interaction between the cage and the lanthanide d orbital plays a crucial role when C82 forms in the presence of Ce to produce Ce@C82 and is also more generally applicable for the formation of other lanthanoid M@C82 molecules. Our theoretical computations are the first to explain this well-established fact. Last, the vibrational spectrum of Ce@C82 has been simulated and analyzed to gain insight into the metal-cage vibrations.  相似文献   

20.
李闯  周惦武  彭平  万隆 《化学学报》2012,70(1):71-77
采用基于密度泛函理论的第一原理方法,计算了LiBH4-X(X=O,F和Cl)体系的晶体与电子结构及解氢性能.生成热和H原子解离能的计算结果表明:O原子掺杂优先占据LiBH4间隙位,F置换氢原子位,而Cl则取代BH4单元;O,F和Cl掺杂的LiBH4体系结构稳定性发生变化,其中O提高体系解氢效果明显,而F和Cl掺杂受H原子区域环境的影响.态密度、Mulliken电子占据数和电子密度的分析结果表明:B—H之间较强的共价键是LiBH4结构稳定、解氢困难的电子结构根源,O,F和Cl对LiBH4解氢能力影响主要是掺杂改变了H的s态与B的sp态的杂化特性、以及BH4单元与Li的成键作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号