首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport coefficients and thermoelectric figure of merit ZT for bulk nanostructured materials based on Bi2Te3-Sb2Te3 solid solutions have been investigated theoretically. Similar materials prepared by rapid quenching of the melt with the subsequent grinding and sintering contain amorphous and nanocrystalline regions with different sizes of particles. According to the performed estimations, the thermoelectric figure of merit of the amorphous phase can exceed the value of ZT for the initial solid solution by a factor of 2?C3 primarily due to the significant decrease in the thermal conductivity. The effective transport coefficients of the medium as a whole have also been investigated as a function of the parameters of each phase, and the concentration range of the amorphous phase, which corresponds to the effective values ZT > 1, has been determined.  相似文献   

2.
A ternary (Bi,Sb)2Te3 bulk nanostructured thermoelectric compound has been prepared by a combination of hydrothermal synthesis and hot pressing. It was found that the grain sizes of the hot-pressed bulk sample vary from tens to hundreds of nanometers, which would be favorable to enhance the scattering of both carriers and phonons, resulting in a high Seebeck coefficient with a satisfactory electrical conductivity and a very low thermal conductivity. The highest figure of merit ZT of the nanostructured (Bi,Sb)2Te3 bulk sample reaches 1.28 at 303 K, which is not only remarkably higher than the zone-melted one, but also higher than commercial state-of-the-art Bi2Te3-based materials. PACS  72.20.Pa; 73.63.Bd; 81.07.Bc  相似文献   

3.
杨梅君  沈强  张联盟 《中国物理 B》2011,20(10):106202-106202
Nanocomposites offer a promising approach to the incorporation of nanostructured constituents into bulk thermoelectric materials. The 0.7-at% Bi-doped Mg2Si nanocomposites are prepared by spark plasma sintering of the mixture of nanoscale and microsized 0.7-at% Bi-doped Mg2Si powders. Microstructure analysis shows that the bulk material is composed of nano- and micrograins. Although the nanograin hinders electrical conduction, the nanocomposite structure is more helpful to reduce thermal conductivity and increase the Seebeck coefficient, hence improving thermoelectric performance. A dimensionless figure of merit of 0.8 is obtained for the 0.7-at% Bi-doped Mg2Si nanocomposite with 50-wt % nanopowder, which is about twice larger than that of the sample without nanopowder.  相似文献   

4.
We investigated the effects of added oxide to FeSi2 on thermoelectric properties in order to improve the figure of merit. The oxide was not suggested to chemically react with the mother material (FeSi2), where the oxide materials existed in the grain boundaries. The oxide addition played a role to reduce thermal conductivity and possessed electrical resistivity as well as non oxide-added FeSi2. Hereafter, the appropriate added amount of Yb2O3 showed the largest effect on the figure of merit among other oxides.  相似文献   

5.
D.M. Hoat 《Physics letters. A》2019,383(14):1648-1654
In the last years, alkaline-earth based antiperovskite compounds with small semiconductor band gap have been proven to be promising candidate for optoelectronic and thermoelectric applications. In this work, the structural, electronic, optical and thermoelectric properties of Ae3PbS (Ae = Ca, Sr and Ba) compounds have been predicted using first principles calculations based on the full-potential linearized augmented plane-wave (FP-LAPW) method and semiclassical Boltzmann transport theory. Exchange-correlation effect is treated with the generalized gradient approximation with Perdew–Burke–Ernzerhof scheme (GGA-PBE) and Tran–Blaha modified Becke–Johnson exchange potential. The lattice constant of considered materials increases as Ae goes in order from Ca to Ba and the hardness slightly decreases in this order. Ca3PbS and Sr3PbS are semiconductor with direct band gap of 0.199 eV and 0.116 eV, respectively, while Ba3PbS is nearly metallic. Important optical responses of studied antiperovskites are found in the visible and ultraviolet energy range. Finally, the thermoelectric properties including Seebeck coefficient, electrical conductivity, thermal conductivity, power factor and figure of merit are calculated. Obtained results show that Ca3PbS and Sr3PbS could be candidate for applications in thermoelectric generators at low and moderate temperatures due to their high figure of merit values.  相似文献   

6.
The effect of Ga doping on the temperature dependences (5 K ≤ T ≤ 300 K) of the Seebeck coefficient α, electrical conductivity σ, thermal conductivity coefficient κ, and thermoelectric figure of merit Z of p-(Bi0.5Sb0.5)2Te3 single crystals has been investigated. It has been shown that, upon Ga doping, the hole concentration decreases, the Seebeck coefficient increases, the electrical conductivity decreases, and the thermoelectric figure of merit increases. The observed variations in the Seebeck coefficient cannot be completely explained by the decrease in the hole concentration and indicate a noticeable variation in the density of states due to the Ga doping.  相似文献   

7.
The need of alternative “green” energy sources has recently renewed the interest in thermoelectric (TE) materials, which can directly convert heat to electricity or, conversely, electric current to cooling. The thermoelectric performance of a material can be estimated by the so-called figure of merit, zT = σ α 2 T/λ (α the Seebeck coefficient, σ α 2 the power factor, σ and λ the electrical and thermal conductivity, respectively), that depends only on the material. In the middle 1990s the “phonon glass and electron crystal” concept was developed, which, together with a better understanding of the parameters that affect zT and the use of new synthesis methods and characterization techniques, has led to the discovery of improved bulk thermoelectric materials that start being implemented in applications. During last decades, special focus has been made on skutterudites, clathrates, half-Heusler alloys, Si1?x Ge x-, Bi2Te3- and PbTe-based materials. However, many other materials, in particular based on intermetallics, pnictides, chalcogenides, oxides, etc. are now emerging as potential advanced bulk thermoelectrics. Herein we discuss the current understanding in this field, with special emphasis on the strategies to reduce the lattice part of the thermal conductivity and maximize the power factor, and review those new potential thermoelectric bulk materials, in particular based on intermetallics, pnictides and chalcogenides. A final chapter, discussing different shaping techniques leading to bulk materials (eventually from nanostructured TE materials), is also included.  相似文献   

8.
We report the thermoelectric properties of nanostructured Cu-deficient Cu2Se, which was synthesized by high energy ball milling followed by spark plasma sintering. Our method obtained a significant enhancement in the thermoelectric figure of merit (ZT), i.e., ~1.4 at 973 K, which was ~30% higher than its bulk counterpart. This enhancement in the thermoelectric performance was due mainly to a significant reduction in the lattice thermal conductivity, which was attributed to enhanced phonon scattering at various length scales by nanoscale defects as well as abundant nanograin boundaries. The nanoscale defects were characterized by transmission electron microscopy of the nanostructured Cu2−xSe samples, which formed the basis of the ZT enhancement.  相似文献   

9.
采用惰性气体保护蒸发-冷凝法制备了纳米Bi及Te粉末, 结合机械合金化和放电等离子烧结技术, 在不同烧结温度下制备出了单一物相且具有纳米层状结构及孪晶亚结构的n型Bi2Te3块体材料, 并系统研究了块体材料的晶粒尺度、微结构及其对电热传输特性的影响. SEM, TEM分析结果表明, 以纳米粉末为原料, 通过有效控制工艺条件, 可以制备出具有纳米层状结构Bi2Te3合金块体材料, 同时纳米层状结构中存在孪晶亚结构; 热电性能测试结果表明, 具有纳米层状结构及孪晶亚结构的块体试样与粗晶材料相比, 热导率大幅度降低, 在423 K附近, 热导率由粗晶材料的1.80 W/mK降至1.19 W/mK, 晶格热导率从1.16 W/mK降至0.61 W/mK, 表明纳米层状结构与孪晶亚结构共存, 有利于进一步提高声子散射, 降低晶格热导率. 其中在693 K放电等离子烧结后的试样于423K附近取得最大值的无量纲热电优值(ZT), 达到0.74.  相似文献   

10.
The dependences of the electrical conductivity and thermopower on the size of grains in a nanocrystalline material based on Bi2Te3-Sb2Te3 solid solutions of the p type have been investigated theoretically and experimentally. The relaxation time in the case of hole scattering by nanograin boundaries in an isotropic polycrystal has been calculated taking into account the energy dependence of the probability of tunneling of charge carriers and the dependence of the scattering intensity on the nanograin size L n . A decrease in the probability of boundary scattering with an increase in the energy of charge carriers leads to an increase in the thermopower. The dependences of the thermopower and electrical conductivity on the nanograin size, which have been obtained taking into account the boundary scattering and scattering by acoustic phonons, are in good agreement with experimental data. For the material under consideration, the thermopower coefficient increases by 10–20% compared to the initial solid solution at L n = 20–30 nm. This can lead to an increase in the thermoelectric figure of merit by 20–40%, provided that the decrease in the electrical conductivity and the decrease in the lattice thermal conductivity compensate each other. Despite the absence of a complete compensation, it has been possible to increase the thermoelectric figure of merit for the samples under investigation to ZT = 1.10–1.12.  相似文献   

11.
Irreversible effects in thermoelectric materials limit their efficiency and economy for applications in power generation and refrigeration. While electron transport is unavoidably irreversible in bulk materials, here we derive conditions under which reversible diffusive electron transport can be achieved in nanostructured thermoelectric materials. We provide a fundamental thermodynamic explanation for why the optimum density of states in a thermoelectric material is a delta function and for why inhomogeneous doping and segmentation improve the thermoelectric figure of merit.  相似文献   

12.
The search for thermoelectric (TE) materials for highly efficient devices aims at improving the TE efficiency and broadening their areas of applications. We created nanostructured thermoelectric Bi-Sb-Te-family materials by high energy (ball milling) pre-treatment of the parent materials followed by high-pressure/high-temperature treatment. Bi0.5Sb1.5Te3 compositions with the superfluous maintenance of tellurium was used for the synthesis of the samples with p-type electrical conductivity. Acoustic microscopy was used to study elastic properties and bulk irregularities and to detection of internal cracks both in the parent materials and in the created nanostructured samples. The data has been used for optimization of parameters of synthesis of nanostructured thermoelectrics.  相似文献   

13.
This paper reports on a theoretical and experimental investigation of the behavior of the electrical and thermal conductivities of a nanostructured material based on Bi x Sb2 − x Te3 solid solutions. The effect of boundary scattering has been taken into account by introducing the scattering mechanism with a constant mean free path equal to the nanoparticle size. A comparison with the results of the measurements has demonstrated that one can describe satisfactorily the experimental dependences of the electrical and thermal conductivities on the nanoparticle size by using only the parameters of the initial solid solution and its pure constituents. The estimates have revealed that the lattice thermal conductivity of nanostructured materials can be reduced by 20–30% as compared to the initial solid solution with nanoparticle sizes of the order of 20 nm, which should produce a favorable effect on the magnitude of the thermoelectric figure-of-merit.  相似文献   

14.
Homogeneous polycrystalline Bi100-xSbx (x=12, 15, 22) alloys were synthesized by mechanical alloying. The transport coefficients (electrical resistivity, thermal conductivity, and thermopower) were measured, in the 77–300 K temperature range, on samples consolidated either by sintering or extrusion. The thermoelectric figure of merit was deduced from the three coefficients. The temperature dependences are discussed as a function of the alloys’ microstructures taking into account the qualitative effect of potential barriers. Extrusion leads to better performing thermoelectric materials than does sintering. The highest figure of merit is reached for temperatures around 150 K, a temperature at which no reliable thermoelectric material of long service life is available until now. Received: 11 November 1998 / Accepted: 5 January 1999 / Published online: 24 March 1999  相似文献   

15.
蒋俊  许高杰  崔平  陈立东 《物理学报》2006,55(9):4849-4853
采用区熔法结合放电等离子体快速烧结(SPS)技术制备了n型Bi2Te3基热电材料.在300—500K的温度范围内测量了各热电性能参数,包括电导率(σ)、塞贝克系数(α)和热导率(κ),研究了掺杂剂TeI4的含量(质量百分比分别为0,0.05,0.08,0.10,0.13和0.15wt%)对热电性能的影响.结果表明:试样的载流子浓度(n)随TeI4含量增加而增大,使电导率增大、塞贝克系数的绝对值先增大而后减小,从而导致品质因子(α2σ)呈先增加后降低的变化趋势;同时,由于异质离子(I-)以及载流子对声子的散射作用增强,可显著降低其晶格热导率.烧结材料的性能优值(ZT=α2σT/κ)对应于TeI4含量为0.08wt%有其最大值,约为0.92.此外,烧结材料的抗弯强度增加至80MPa左右,从而可以显著改善材料的可加工性以及元器件的使用可靠性. 关键词: 2Te3')" href="#">Bi2Te3 放电等离子体快速烧结 热电性能  相似文献   

16.
彭华  王春雷  李吉超  张睿智  王洪超  孙毅 《中国物理 B》2011,20(4):46103-046103
The full-potential linear augmented plane wave method based on density functional theory is employed to investigate the electronic structure of BaSi 2 . With the constant relaxation time and rigid band approximation,the electrical conductivity,Seebeck coefficient and figure of merit are calculated by using Boltzmann transport theory,further evaluated as a function of carrier concentration. We find that the Seebeck coefficient is more anisotropic than electrical conductivity. The figure of merit of BaSi 2 is predicted to be quite high at room temperature,implying that optimal doping may be an effective way to improve thermoelectric properties.  相似文献   

17.
制备工艺对p型碲化铋基合金热电性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
蒋俊  李亚丽  许高杰  崔平  吴汀  陈立东  王刚 《物理学报》2007,56(5):2858-2862
利用区熔法、机械合金化、放电等离子烧结(SPS)技术、热压法等多种工艺制备了p型碲化铋基热电材料.在300—500K的温度范围内测量了各热电性能参数,包括电导率(σ)、塞贝克系数(α)和热导率(κ),研究了制备工艺对热电性能的影响.结果表明,所制备的块体材料与同组成区熔晶体相比,性能优值ZT均有不同程度的提高.其中,利用区熔法结合SPS技术可获得热电性能最佳的块体材料,其ZT值达1.15. 关键词: 碲化铋 放电等离子烧结 区熔法 热电性能  相似文献   

18.
晶粒尺寸对CoSb3化合物热电性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
余柏林  祁琼  唐新峰  张清杰 《物理学报》2005,54(12):5763-5768
系统地研究了晶粒尺寸对CoSb3化合物热电性能的影响规律,结果表明晶粒尺寸对CoSb3化合物的晶格热导率κp、电导率σ、能隙宽度Eg和Seebeck系数α有显著影响.当晶粒尺寸由微米尺度减小到纳米尺度时,晶格热导率κp显著降低,Seebeck系数α有较大幅度的增加,能隙宽度Eg变宽,电导率σ有一定程度的下降.平均晶粒尺寸为200nm的CoSb3化合物在温度为700K时,ZT值达到0.43,比平均晶粒尺寸为5000nm的试样增加了4倍.  相似文献   

19.
The study of the ternary phase diagram Yb–Sb–Te has led to the synthesis of YbSb2Te4 as a pure phase by way of high energy ball milling followed by annealing, whereas typical high temperature powder metallurgy leads to multiphase sample with impurities of the very stable YbTe. The Hall mobility, Seebeck coefficient, electrical resistivity and thermal conductivity of the layered compound YbSb2Te4 were measured in the range of 20–550 °C. The thermoelectric figure of merit peaks at 525 K and reaches 0.5. Of particular interest is the very low lattice thermal conductivity (as low as a glass) which makes YbSb2Te4 and related compounds promising thermoelectric materials. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We consider textured materials of the DyBa2Cu3O7 type seeded with a Nd123 seed as initiator. They are grown with an excess 20% Dy211 phase on a Dy2O3 substrate. We report chemical characterization, electrical resistivity, thermoelectric power and thermal conductivity over a broad temperature range as a function of an applied magnetic field up to 6 T. We show that specific features appear in the magneto-thermal transport properties, different in these materials from those found in single crystals and polycrystalline samples. We propose that two vortex regimes can be distinguished in the mixed phase, due to the intrinsic microstructure. We calculate the viscosity, entropy and figure of merit of the samples. PACS 74.62.Bf; 74.72.Bk; 74.25.Fy; 72.15.Jf; 74.25.Op;74.25.Qt  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号