首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distributions of the conductance G of a long quantum wire with the fractal distribution of barriers have been obtained in the successive incoherent tunneling regime. The asymptotic behavior (in the limit L → ∞) of moments 〈G k (L)〉, average power of the shot noise 〈S(L)〉, and Fano factor agree with the results of the work [C. W. J. Beenakker et al., Phys. Rev. B 79, 024204 (2009)], and the distributions themselves describe well the Monte Carlo simulation results. The equation that has been obtained for the distributions of the resistance and conductance agrees with the recent fractional differential generalization of the Dorokhov-Mello-Pereyra-Kumar equation for the quasi-one-dimensional multichannel disordered semiconductors with a self-similar distribution of scatterers.  相似文献   

2.
Ultraviolet emission spectra of the TiF radical in the 407 nm region have been observed at a resolution of 0.04 cm−1 using a Fourier transform spectrometer. A new electronic assignment of 4Γ–X4Φ has been proposed. Rotational analysis has been obtained for the 0–0 and 1–1 vibrational bands of the 4Γ5/2X4Φ3/2, 4Γ9/2X4Φ7/2, and 4Γ11/2X4Φ9/2 subbands and the 0–0 band of 4Γ7/2X4Φ5/2. The lower state rotational and centrifugal distortion constants are consistent with the previous results [J. Mol. Spectrosc. 184 (1997) 186; J. Chem. Phys. 119 (2003) 9496], to the conformation that the lower state of the 407 nm band is the 4Φ ground electronic state. Rough estimates of the vibrational interval ΔG(1/2) and the spin–orbit coupling constant A in the 4Γ state were also obtained.  相似文献   

3.
Quark model results for the B → π, decays are analysed, making use of the dispersion formulation of the model: The form factors at q2 > 0 are expressed as relativistic invariant double spectral representation over invariant masses of the initial and final mesons through their light-cone wave functions. The dependence of the results on the quark model parameters is studied. For various versions of the quark model the ranges

,

, and ΓLT = 0.7 ± 0.08 are found. The effects of the constituent quark transition form factor are briefly discussed.  相似文献   

4.
Wurtzitic nitride quantum wells grown along the (0001) axis experience a large Stark effect induced by the differences of spontaneous and piezoelectric polarizations between the well and barrier materials. In AlxGa1−xN/GaN quantum wells, due to the adverse actions of quantum confinement, that blue-shifts transition energies, and of the Stark field, that red-shifts them, the transition energies are nearly independent of barrier compositions at a particular well thickness (L02.6 nm), at least for x≤0.3. The effect of alloy fluctuations is then minimal, as reflected by a minimum in the quantum well luminescence linewidth when LL0 for wells grown by molecular beam epitaxy on silicon or sapphire substrates. We use this effect to estimate the average variances of well widths and alloy composition fluctuations. Both results are in good agreement with, respectively, a scanning tunneling microscopy study of GaN (0001) surfaces, and estimates based on the lateral extent of the quantum well excitons.We then discuss the optical properties of the AlxGa1−xN barrier material, with particular emphasis on the symmetry of the valence band maximum (Γ9 or Γ7). We show that it may play an important role in the apparent barrier luminescence efficiency. We analyse the possible consequences of the barrier Γ9Γ7 crossover on the AlxGa1−xN/GaN quantum well properties.  相似文献   

5.
A M Jayannavar 《Pramana》1988,30(5):L459-L462
The mean-squared voltage fluctuation of a disordered conductor of lengthL smaller than the phase coherence lengthL ϕ, is independent of the distance between the probes. We obtain this result using the voltage additivity and the known results for the conductance fluctuation. Our results complement the recent theoretical and experimental findings.  相似文献   

6.
马松山  徐慧  郭锐  崔麦玲 《物理学报》2010,59(7):4972-4979
在单电子紧束缚近似下,建立了准一维多链无序体系直流、交流电子跳跃输运模型,通过计算探讨了无序模式、维度效应、温度及外场对其直流、交流电导率的影响.计算结果表明:准一维多链无序体系的直流、交流电导率随着格点能量无序度的增大而减小,非对角无序具有增强体系电子输运能力的作用.随着链数的增加,体系的直流、交流电导率增大,但格点能量无序度较小时,维度效应的影响不明显.在对角无序情况下准一维多链无序体系的交流电导率随温度的升高而增大,而在非对角无序模式下却随温度的升高而减小,但对于直流情况,体系的直流电导率随温度的升  相似文献   

7.
An apparent difference between formulating mean field perturbation theory for λφ4 field theory via path integrals or via functional differential equations when there are external sources present is shown not to exist when mean field theory is considered as the N = 1 limit of the 0(N)λφ4 field theory. A simple method is given for determining the 1/N expansion for the Green's functions in the presence of external sources by directly solving the functional differential equations order by order in 1/N. The 1/N expansion for the effective action Γ(φ, χ) is obtained by directly integrating the functional differential equations for the fields φ and χ ( ) in the presence of two external sources j = −δΓ/δφ, S = −δΓ/δχ.  相似文献   

8.
Several properties are calculated for A2Πu of —the majority for the first time—including electric and magnetic moments, and fine/hyperfine structure (fs/hfs) parameters. The new results are compared with our previous ones for X2 and B2 of [P.J. Bruna, F. Grein, J. Mol. Spectrosc. 227 (2004) 67–80]. The electric quadrupole Θ and hexadecapole Φ moments, polarizability α, and hfs constants a, b, c, d, eQq0, eQq2 are evaluated at the density functional theory (DFT) level [B3LYP/aug-cc-pVQZ]. The fs constants (spin–orbit coupling AΠ, Λ-doubling p, q, spin-rotation γΠ), and magnetic moments (g-factors) are obtained via 2nd-order sum-over-states expansions, using wavefunctions and matrix elements obtained with a multireference configuration interaction (MRDCI) method, and the Breit–Pauli Hamiltonian. At equilibrium, 2nd-order properties of A2Πu are dominated by its coupling with B2. For the A state, two independent components are reported for traceless tensor properties (multipoles Θ and Φ; hfs parameters c/d and q0/q2) and three for traced properties (polarizability α and g-factors), i.e., one more component than for axially symmetric Σ states. The currently available experimental data on — limited to AΠ, p, and q—are well reproduced by our theoretical results.  相似文献   

9.
Data on at rest show two resonant processes: (a) f0(1370)η,f0(1370)→σσ and ρρ, (b) η(1440)σ, η(1440)→ηπ+π. The branching ratio BR[f0(1370)→ρρ]/BR[f0(1370)→σσ]=0.98±0.25 in the mass range available here. Using data on , the ratio Γ5 for f0(1370). The effects of the strongly s-dependent width of f0(1370) are discussed in some detail.The η(1440) is observed decaying to ησ and a0(980)π, with strong destructive interference between them. In its decay to a0(980)π, a narrow peak appears in the ηπ mass spectrum, but 30–50 MeV above that usually attributed to a0(980) and significantly above the KK threshold. This effect is explained naturally by a two-step process: η(1440)→K*(890)K followed by rescattering of the two kaons through a0(980) to ηπ above the KK threshold.  相似文献   

10.
The specific conductance of ammonium formate, ammonium benzoate, sodium formate and sodium benzoate in (10%, 20% and 30% (W/W)) methanol–water, ethanol–water and glycerol–water mixtures at different temperatures (293, 298, 303 and 308 K) was measured.The molar conductance (Λ), limiting molar conductance (Λ0), limiting ionic conductance (λ0), association constants (KA), the activation energy of the transport process (Ea), Walden product (Λ0η0), hydrodynamic radii (1/rs+ + 1/rs)− 1, transfer numbers of the studied ions (t), standard thermodynamic parameters of association (ΔGA, ΔHA and ΔSA) were calculated and discussed.The results show that, the molar conductance and the limiting molar conductance values were decreased as the relative permittivity of the solvent decreased while, the association constant increased. Also the results show that the molar conductance, the limiting molar conductance and the association constant values were increased as the temperature increased indicating that the association process is an endothermic one.  相似文献   

11.
Dense (n=4×1011 cm-2) arrays of Ge quantum dots in a Si host were studied using attenuation of surface acoustic waves (SAWs) propagating along the surface of a piezoelectric crystal located near the sample. The SAW magneto-attenuation coefficient, ΔΓ=Γ(ω,H)-Γ(ω,0), and change of velocity of SAW, ΔV/V=(V(H)-V(0))/V(0), were measured in the temperature interval T=1.5–4.2 K as a function of magnetic field H up to 6 T for the waves in the frequency range f=30–300 MHz. Based on the dependences of ΔΓ on H, T and ω, as well as on its sign, we believe that the AC conduction mechanism is a combination of diffusion at the mobility edge with hopping between localized states at the Fermi level. The measured magnetic field dependence of the SAW attenuation is discussed based on existing theoretical concepts.  相似文献   

12.
The millimeter-wave spectrum of 2,3-dihydrofuran in the ground and five ring-puckering excited states has been measured in the frequency range 100–250 GHz. The ground and first ring-puckering excited states have been fitted to a two-state Hamiltonian including Coriolis coupling interaction. The determined energy difference of 18.684(7) cm−1between these states and theaandbtype coupling parameters are consistent with the ring-puckering potential function and the previously observed dependence of the centrifugal distortion constants ΔJK, ΔK, and δK. A small ring-puckering dependence of the quartic centrifugal distortion constants ΔJand δJhas been also observed. This dependence is well accounted for in terms of the ring-puckering potential function and the vibrational dependence of the rotational constants.  相似文献   

13.
The Kadomtsev-Petviashvili (KP) hierarchy has infinitely many Hamiltonian pairs, then th pair of them is associated withL n , whereL is the pseudodifferential operator (PDO) [3,4]. In this paper, by the factorizationL n =L n ...L 1 withL j ,j=1,...,n being the independent PDOs, we construct the Miura transformation for the KP, which leads to a decomposition of the second Hamiltonian structure in then th pair to a direct sum. Each term in the sum is the second structure in the initial pair associated withL j . When we impose a constraint (1.9) (i.e a new type of reduction) to the KP hierarchy, we obtain the similar results for the constrained KP hierarchy. In particular the second Hamiltonian structure for this hierarchy is transformed to a vastly simpler one.  相似文献   

14.
Using the Pirogov–Sinai theory, we study finite-size effects for the ferromagnetic q-state Potts model in a cube with boundary conditions that interpolate between free and constant boundary conditions. If the surface coupling is about half of the bulk coupling and q is sufficiently large, we show that only small perturbations of the ordered and disordered ground states are dominant contributions to the partition function in a finite but large volume. This allows a rigorous control of the finite-size effects for these weak boundary conditions. In particular, we give explicit formulæ for the rounding of the infinite-volume jumps of the internal energy and magnetization, as well as the position of the maximum of the finite-volume specific heat. While the width of the rounding window is of order L d , the same as for periodic boundary conditions, the shift is much larger, of order L –1. For strong boundary conditions—the surface coupling is either close to zero or close to the bulk coupling—the finite size effects at the transition point are shown to be dominated by either the disordered or the ordered phase, respectively. In particular, it means that sufficiently small boundary fields lead to the disordered, and not to the ordered Gibbs state. This gives an explicit proof of A. van Enter's result that the phase transition in the Potts model is not robust.  相似文献   

15.
Mechanisms of ‘environmental decoherence’ such as surface scattering, Elliot–Yafet process and precession mechanisms, as well as their influence on the spin phase relaxation are considered and compared. It is shown that the ‘spin ballistic’ regime is possible, when the phase relaxation length for the spin part of the wave function (L(s)) is much greater than the phase relaxation length for the ‘orbital part’ (L(e)). In the presence of an additional magnetic field, the spin part of the electron's wave function (WF) acquires a phase shift due to additional spin precession about that field. If the structure length L is chosen to be L(s)>L>L(e), it is possible to ‘wash out’ the quantum interference related to the phase coherence of the ‘orbital part’ of the WF, retaining at the same time that related to the phase coherence of the spin part and, hence, to reveal corresponding conductance oscillations.  相似文献   

16.
Electron spin echo envelope modulation (ESEEM) is a technique of pulsed-electron paramagnetic resonance (EPR) spectroscopy. The analyis of ESEEM data to extract information about the nuclear and electronic structure of a disordered (powder) paramagnetic system requires accurate and efficient numerical simulations. A single coupled nucleus of known nuclear g value (gN) and spin I = 1 can have up to eight adjustable parameters in the nuclear part of the spin Hamiltonian. We have developed OPTESIM, an ESEEM simulation toolbox, for automated numerical simulation of powder two- and three-pulse one-dimensional ESEEM for arbitrary number (N) and type (I, gN) of coupled nuclei, and arbitrary mutual orientations of the hyperfine tensor principal axis systems for N > 1. OPTESIM is based in the Matlab environment, and includes the following features: (1) a fast algorithm for translation of the spin Hamiltonian into simulated ESEEM, (2) different optimization methods that can be hybridized to achieve an efficient coarse-to-fine grained search of the parameter space and convergence to a global minimum, (3) statistical analysis of the simulation parameters, which allows the identification of simultaneous confidence regions at specific confidence levels. OPTESIM also includes a geometry-preserving spherical averaging algorithm as default for N > 1, and global optimization over multiple experimental conditions, such as the dephasing time (τ) for three-pulse ESEEM, and external magnetic field values. Application examples for simulation of 14N coupling (N = 1, N = 2) in biological and chemical model paramagnets are included. Automated, optimized simulations by using OPTESIM lead to a convergence on dramatically shorter time scales, relative to manual simulations.  相似文献   

17.
An analysis of the Zeeman effect with a strong external magnetic field on the energy spectrum in graphene is presented. In general, the Hamiltonian of graphene in applied electric and magnetic fields is not of SO(1, 2) invariance even in the nearest-neighbor approximation because of the Zeeman coupling. But an approximate SO(1, 2) invariance can be obtained when the applied magnetic field is very strong. This approximate invariance can be used to relate the energy structure of graphene in the presence of both electric and magnetic fields to that when there is only magnetic field. Therefore, it can help explain the recently found quantum Hall conductance (4q 2/h)L for L = 0.1.  相似文献   

18.
Using full 3D self-consistent electronic structure calculations of small (electron numberN 100) lateral quantum dots formed on GaAs–AlGaAs HEMT devices we calculate the statistics of level spacings Δεpand tunneling coefficients Γpbetween leads and confined states of the dot. We employ random and ordered donor layer charge distributions, the latter generated through Monte Carlo variable range hopping simulations, as well as a homogeneous (jellium) ionic charge distribution, and examine the effects on these statistics.It has recently been argued that the statistics of the level spacings and widths follow from random matrix theory when the Hamiltonian is described by the Gaussian orthogonal ensemble (GOE) for zero magnetic fieldB, and by the Gaussian unitary ensemble (GUE) forBsufficiently large to break time reversal symmetry. Specifically it is argued that when the dot wave functions are expanded in an arbitrary basis the expansion coefficients, according to the postulate of Porter and Thomas, are uniformly distributed in Hilbert space.In our calculation we obtain statistics of level spacings and widths by generating many configurations of disordered and ordered donor charge. This corresponds to the experimental situation of thermal cycling of the device. We find that a pronounced transition occurs in the level spacing statistics between the completely disordered donor layer ensemble, which seems to be well described by random matrix theory, and the ordered ensemble which is dominated by secular variations in the coefficients. In particular, a shell structure in the levels, which results from approximate parabolicity in the self-consistent confining potential, is observed. This, and the effects of symmetry under inversion and azimuthal symmetry, are speculated to undermine level repulsion and result in Poisson statistics for the levels here at the band edge.Finally we find that distortions in the dot shape are markedly less significant in varying the widths (and level spacings) than calculations based on a hard wall potential for the dot predict. This suggests that the notion of invariant atomic structure for sufficiently small dots is not invalidated by the randomness inherent in donor positions and shape distortion but, on the contrary, a systematic study of dot structure is possible.  相似文献   

19.
Transport properties of a novel quasi-ballistic quantum wire field-effect transistor are studied experimentally and then discussed in relation to a theory for dirty Tomonaga–Luttinger (T–L) liquids. The sample was prepared by constricting lithographically an epitaxially grown In0.1Ga0.9As/GaAs quantum well channel, whose bottom interface is corrugated by a quasi-periodic array of multi-atomic steps of 20 nm in periodicity. A quasi-one-dimensional channel of about 200 nm in metallurgical width and in length was formed and its conductance parallel to the steps was measured at temperatures between 4 and 0.3 K as a function of gate voltage. Plateau-like structures substantially lower than 2e2/h were observed. The conductance at each gate voltage decreases sensitively as temperature lowers until it gets nearly constant below a critical temperature. These tendencies are found to be qualitatively consistent with the theory of Ogata and Fukuyama for dirty T–L liquids. The temperature dependence above the critical temperature is found to fit quantitatively with the formula of Ogata and Fukuyama, if the parameters are suitably chosen.  相似文献   

20.
We theoretically study an enhancement of the Kondo effect in quantum dots with two orbitals and spin . The Kondo temperature and conductance are evaluated as functions of energy difference Δ between the orbitals, using the numerical renormalization group method. The Kondo temperature is maximal around the degeneracy point (Δ=0) and decreases with increasing |Δ| following a power law, TK(Δ)=TK(0)(TK(0)/|Δ|)γ, which is consistent with the scaling analysis. The conductance at T=0 is almost constant 2e2/h. Both the orbitals contribute to the conductance around Δ=0, whereas the current through the upper orbital is negligibly small when |Δ|TK(0). These are characteristics of SU(4) Kondo effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号