首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Exact solutions are obtained for the heat transfer in an electrically conducting fluid past a stretching sheet subjected to the thermal boundary with either a prescribed temperature or a prescribed heat flux in the presence of a transverse magnetic field. The solutions for the heat transfer characteristics are evaluated numerically for different parameters, such as the magnetic parameterN, the Prandtl numberPr, the surface temperature indexs, and the surface heat flux indexd. It is observed that for the prescribed surface temperature case the fluid temperature increases due to the existance of the magnetic field, and decreases as the Prandtl number or the surface temperature index increases; for the prescribed surface heat flux case, the surface temperature decreases as the Prandtl number of the surface heat flux index increases, and the magnetic parameter decreases. In addition, varying the prescribed surface temperature indexs affects the mechanism of heat transfer.  相似文献   

2.
Heat transfer in stagnation-point flow towards a stretching sheet   总被引:5,自引:0,他引:5  
 Steady two-dimensional stagnation-point flow of an incompressible viscous fluid over a flat deformable sheet is investigated when the sheet is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. It is shown that for a fluid of small kinematic viscosity, a boundary layer is formed when the stretching velocity is less than the free stream velocity and an inverted boundary layer is formed when the stretching velocity exceeds the free stream velocity. Temperature distribution in the boundary layer is found when the surface is held at constant temperature and surface heat flux is determined. Received on 12 July 2000 / Published online: 29 November 2001  相似文献   

3.
In this study, an analysis has been performed for heat and mass transfer with radiation effect of a steady laminar boundary-layer flow of a micropolar flow past a nonlinearly stretching sheet. Parameters n, K, k 0, Pr, Ec, and Sc represent the dominance of the nonlinearly effect, material effect, radiation effect, heat and mass transfer effects which have presented in governing equations, respectively. The similar transformation, the finite-difference method and Runge–Kutta method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of θ′(0) and ϕ′(0) for calculating the heat and mass transfer of the similar boundary-layer flow are carried out as functions of n, Ec, k 0, Pr, Sc. The value of n, k 0, Pr and Sc parameters are important factors in this study. It will produce greater heat transfer efficiency with a larger value of those parameters, but the viscous dissipation parameter Ec and material parameter K may reduce the heat transfer efficiency. On the other hand, for mass transfer, the value of Sc parameter is important factor in this study. It will produce greater heat transfer efficiency with a larger value of Sc.  相似文献   

4.
The heat transfer characteristics of the three-dimensional flow of an incompressible viscous fluid caused by stretching of an elastic sheet with uniform tension in two horizontal directions are studied subject to the following conditions; (a) the sheet is held at constant temperature; (b) the sheet is exposed to a uniform heat flux. The similarity solutions for temperature exist for both the cases. It is shown that for fixedPr, the temperature at a point decreases with increase in in Case (a) and the sheet temperature also decreases with increasing for Case (b).
Die Wärmeübertragungseigenschaften eines inkompressiblen viskosen Fluids bei der Strömung über eine dehnbare Folie
Zusammenfassung Es werden die Wärmeübertragungseigenschaften einer dreidimensionalen Strömung eines inkompressiblen viskosen Fluids, verursacht durch Dehnung einer elastischen Folie, mit gleichmäßiger Spannung in zwei horizontale Richtungen, unter Berücksichtigung folgender Bedingungen betrachtet; (a) die Folie wird bei konstanter Temperatur gehalten; (b) die Folie wird einem gleichmäßigen Wärmestrom ausgesetzt. Die Ähnlichkeitslösungen für die Temperatur existieren in beiden Fällen. Es wird gezeigt, daß im Fall (a) die Temperatur bei konstanter Prandtl-Zahl gleichzeitig mit einem anwachsenden fällt, und daß auch im Fall (b) die Folientemperatur mit wachsendem fällt.
  相似文献   

5.
In this paper the problem of momentum and heat transfer in a thin liquid film of power-law fluid on an unsteady stretching surface has been studied. Numerical solutions are obtained for some representative values of the unsteadiness parameter S and the power-law index n for a wide range of the generalized Prandtl number, 0.001 ≤ Pr ≤ 1000. Typical temperature and velocity profiles, the dimensionless film thickness, free-surface temperature, and the surface heat fluxes are presented at selected controlling parameters. The results show that increasing the value of n tends to increase the boundary-layer thickness and broadens the temperature distributions. The free-surface temperature of a shear thinning fluid is larger than that of a Newtonian fluid, but the opposite trend is true for a shear thickening fluid. For small generalized Prandtl numbers, the surface heat flux increases with a decrease in n, but the impacts of n on the heat transfer diminish for Pr greater than a moderate value (approximately 1 ≤ Pr ≤ 10, depending on the magnitude of S).  相似文献   

6.
 Nonlinear hydromagnetic flow and heat transfer over a surface stretching with a power-law velocity is analysed. A special form of the magnetic field is chosen to obtain similarity equations. Resulting equations are numerically solved using Runge–Kutta shooting method. Values of skin-friction and rate of heat transfer are obtained and the effect of magnetic field, stretching parameter and Prandtl number over these are discussed. Received on 2 May 2001 / Published online: 29 November 2001  相似文献   

7.
An analysis is made for the steady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching vertical sheet in its own plane. The stretching velocity, the surface temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the magnetic parameter M, the velocity exponent parameter m, the temperature exponent parameter n and the buoyancy parameter λ, while the Prandtl number Pr is fixed, namely Pr = 1, using a finite difference scheme known as the Keller-box method. Similarity solutions are obtained in the presence of the buoyancy force if n = 2m−1. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M increases for fixed λ and m. For m = 0.2 (i.e. n = −0.6), although the sheet and the fluid are at different temperatures, there is no local heat transfer at the surface of the sheet except at the singular point of the origin (fixed point).  相似文献   

8.
The steady nonlinear hydromagnetic flow of an incompressible, viscous and electrically conducting fluid with heat transfer over a surface of variable temperature stretching with a power-law velocity in the presence of variable transverse magnetic field is analysed. Utilizing similarity transformation, governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations and they are numerically solved using fourth-order Runge–Kutta shooting method. Numerical solutions are illustrated graphically by means of graphs. The effects of magnetic field, stretching parameter and Prandtl number on velocity, skin friction, temperature distribution and rate of heat transfer are discussed.  相似文献   

9.
10.
An analysis is made of heat transfer in the boundary layer of a viscoelastic fluid flowing over a stretching surface. The velocity of the surface varies linearly with the distance x from a fixed point and the surface is held at a uniform temperature T w higher than the temperature T of the ambient fluid. An exact analytical solution for the temperature distribution is found by solving the energy equation after taking into account strain energy stored in the fluid (due to its elastic property) and viscous dissipation. It is shown that the temperature profiles are nonsimilar in marked contrast with the case when these profiles are found to be similar in the absence of viscous dissipation and strain energy. It is also found that temperature at a point increases due to the combined influence of these two effects in comparison with its corresponding value in the absence of these two effects. A novel result of this analysis is that for small values of x, heat flows from the surface to the fluid while for moderate and large values of x, heat flows from the fluid to the surface even when T w >T . Temperature distribution and the surface heat flux are determined for various values of the Prandtl number P, the elastic parameter K 1 and the viscous dissipation parameter a. Numerical solutions are also obtained through a fourth-order accurate compact finite difference scheme. Received on 14 October 1997  相似文献   

11.
12.
John H. Merkin  V. Kumaran 《Meccanica》2012,47(8):1837-1847
The time evolution in the temperature field resulting from the sudden introduction of a heat source into the already fully established steady MHD flow of an electrically conducting fluid past a linearly stretching isothermal surface is considered. The problem is shown to be fully described by two dimensionless parameters, a modified magnetic field strength ?? and a heat source strength Q. Numerical solutions of the initial-value problem show that there is a critical value Q c of the parameter Q, dependent on ??, such that, for Q<Q c , the solution approaches a steady state at large times and, for Q>Q c , the solutions grows exponentially large as time increases. This growth rate is determined through an eigenvalue problem which also determines the critical value Q c . The limits of Q c for both small and large values of ?? are discussed.  相似文献   

13.
The effect of chemical reaction on free convective flow and mass transfer of a viscous, incompressible and electrically conducting fluid over a stretching surface is investigated in the presence of a constant transverse magnetic field. The non-linear boundary layer equations with the boundary conditions are transferred by a similarity transformation into a system of non-linear ordinary differential equations with the appropriate boundary conditions. Furthermore, the similarity equations are solved numerically by using a fourth order Runge-Kutta scheme with the shooting method. Numerical results of the skin friction coefficient, the local Nusselt number Nu, the local Sherwood number Sh, as will as the velocity, temperature and concentration profiles are presented for gases with a Prandtl number of 0.71 for various values of chemical reaction parameter, order of reaction, magnetic parameter and Schmidt number.  相似文献   

14.
This paper presents a study of the flow and heat transfer of an incompressible homogeneous second grade fluid past a stretching sheet. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation. The effects of viscous dissipation and work due to deformation are considered in the energy equation and the variations of dimensionless surface temperature and dimensionless surface temperature gradient with various parameters are graphed and tabulated. Two cases are studied, namely, (i) the sheet with constant surface temperature (CST case) and (ii) the sheet with prescribed surface temperature (PST case).  相似文献   

15.
In the present work, the effect of MHD flow and heat transfer within a boundary layer flow on an upper-convected Maxwell (UCM) fluid over a stretching sheet is examined. The governing boundary layer equations of motion and heat transfer are non-dimensionalized using suitable similarity variables and the resulting transformed, ordinary differential equations are then solved numerically by shooting technique with fourth order Runge–Kutta method. For a UCM fluid, a thinning of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for higher the elastic number. The objective of the present work is to investigate the effect of Maxwell parameter β, magnetic parameter Mn and Prandtl number Pr on the temperature field above the sheet.  相似文献   

16.
The steady flow of a viscous and incompressible fluid impinging at some angle of incidence on a stretching sheet is studied. It is shown that the stream function splits into a Hiemenz and a tangential component. Numerical solutions of the relevant functions as well as the structure of the flow field are presented and discussed. It is found that the free stream obliqueness is the shift of the stagnation point toward the incoming flow and it depends on the inclination angle.  相似文献   

17.
The magnetohydrodynamic (MHD) flow and heat transfer characteristics for the boundary layer flow over a permeable stretching sheet are considered. Velocity and thermal slip conditions are taken into account. Problem formulation is developed in the presence of thermal radiation. Governing non‐linear problem is solved by a homotopy analysis method. Convergence of the derived solutions is studied. Numerical values of skin‐friction coefficient and local Nusselt number are tabulated. Effects of pertinent parameters on the velocity and temperature profiles are discussed. Comparison between the present and previous limiting results is shown. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the problem of steady magnetohydrodynamic boundary layer flow and heat transfer of a viscous and electrically conducting fluid over a stretching sheet is studied. The effect of the induced magnetic field is taken into account. The transformed ordinary differential equations are solved numerically using the finite-difference scheme known as the Keller-box method. Numerical results are obtained for various values of the magnetic parameter, the reciprocal magnetic Prandtl number and the Prandtl number. The effects of these parameters on the flow and heat transfer characteristics are determined and discussed in detail. When the magnetic field is absent, the closed analytical results for the skin friction are compared with the exact numerical results. Also the numerical results for the heat flux from the stretching surface are compared with the results reported by other authors when the magnetic field is absent. It is found that very good agreement exists.  相似文献   

19.
This paper deals with the study of boundary layer flow and heat transfer of a visco-elastic fluid immersed in a porous medium over a non-isothermal stretching sheet. The fluid viscosity is assumed to vary as a function of temperature. The presence of variable viscosity of the fluid leads to the coupling and the non-linearity in the boundary value problem. A numerical shooting algorithm for two unknown initial conditions with fourth-order Runge-Kutta integration scheme has been used to solve the coupled non-linear boundary value problem. An analysis has been carried out for two different cases namely (1) prescribed surface temperature (PST), and (2) prescribed heat flux (PHF), to get the effect of fluid viscosity, permeability parameter and visco-elastic parameter for various situations. The important finding of our study is that the effect of fluid viscosity parameter is to decrease the wall temperature profile significantly when flow is through a porous medium. Further, the effect of permeability parameter is to decrease the skin friction on the sheet.  相似文献   

20.
There has been much recent interest in the stagnation point flow of a fluid toward a stretching sheet. Investigations that may include oblique stagnation flow and heat transfer to a horizontal plate all involve the same boundary value problem (BVP):
f?+ff-(f)2+b2=0,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号