首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compounds [Co(H2 L]X 2(X=Cl, Br, I, NO3, ClO4), [Co(H2 L–Br2)]Br2, [Co(H2 L–Br2py 2]Br2 and [Co(H2 L)Cl]Cl2 were isolated. They were investigated by means of thermoanalysis, IR and VIS spectroscopy, magnetochemistry and molar conductivity.
  相似文献   

2.
The vibrational (conventional and far-infrared) and diffuse-reflectance spectra in conjunction with magnetic susceptibility measurements over a temperature range down to liquid nitrogen temperature are reported and discussed for the complexes; [Mn(HPOX)2 X 2]; [Mn(HMPX)2 X 2]; [Fe(HPOX)(POX) X 2] and [Fe(HMPX)(MPX) X 2](whereHPOX=pyridine-2-aldoxime (C6H6N2O);POX=C6H5N2O;HMPX=6-Methylpyridine-2-aldoxime (C7H8N2O);MPX=C7H7N2O;X=Cl, Br, I, NO3, NCS, or OA c andX 2=SO4). On the basis of these physical studies a six-coordinated structure is suggested for the manganese(II) and iron(III) complexes.Mössbauer spectra, measured at room-temperature and liquid nitrogen temperature also indicated a six-coordinate geometry for iron(III) complexes.
Übergangsmetallkomplexe mit Oxim-enthaltenden Liganden, IX. Spektroskopische und magnetische Untersuchungen von Mn(II)- und Fe(II)-Komplexen mit Pyridin-2-aldoxim und 6-Methylpyridin-2-aldoxim
Zusammenfassung Es wurden Komplexe von Pyridin-2-aldoxim (HPOX) und 6-Methylpyridin-2-aldoxim (HMPX) vom Typ [Mn(HPOX)2 X 2], [Mn(HMPX)2 X 2], [Fe(HPOX)(POX)X 2] und [Fe(HMPX)(MPX)X 2] (X=Cl, Br, I, NO3, NCS, OA c;X 2=SO4) dargestellt. Die Diskussion erfolgt basierend auf Infrarot-spektroskopie (inklusive fernes IR), Messungen der magnetischen Suszeptibilität (Temp. bis zu fl. N2) undMössbauer-Spektroskopie.
  相似文献   

3.
A new symmetrical vicinal dioxime, N,N′-bis-{4-[[(2-hydroxyphenyl)methylene]hydrazinecarbonyl]phenyl}diaminoglyoxime (LH4), was prepared by reacting anti-dichloroglyoxime with salicylaldehyde 4-aminobenzoylhydrazone. The reaction of ligand with Ni2+ salts gave mono-and homopentanuclear complexes, [Ni(LH3)2] and [Ni5(LH)2X2]. Furthermore, heteropentanuclear complexes of dioxime ligand, [Cu4Ni(LH)2X4], were prepared by the reaction of [Ni(LH3)2)] with Cu2+ salt and a monodentate ligand (X = SCN, CN, or N 3 ). The structures of both the new symmetrical vicinal dioxime and its complexes were identified by elemental analyses, IR, 1H NMR, UV-VIS spectra, and magnetic susceptibility. The elemental analyses and spectral data indicate that the hydrazone side of ligand acts as a O,N,O′ tridentate and the fourth position is occupied with monodentate anion such as SCN, CN, N 3 .  相似文献   

4.
磁性微胶囊的制备及其药物缓控释性能   总被引:2,自引:0,他引:2  
用乳液-凝胶法制备了磁性壳聚糖/海藻酸钠微胶囊. 在壳聚糖/海藻酸钠微胶囊中掺入Fe3O4磁性中空球, 使微胶囊具有磁靶向性能. 以头孢拉定作为模型药物研究了载药磁性微胶囊的载药量、包封率及药物缓控释性能等. 结果表明, 提高头孢拉定的初始浓度可以提高载药量, 却不利于提高药物的包封率. 所制备的微胶囊在各种缓冲溶液中长时间内具有显著的缓释效果, 并具有pH 刺激响应释放的性能, 即在模拟胃液中的药物释放率大大降低, 而在模拟体液和肠液中的释放时间大大延长, 可达50 h以上. 另外, 在外加磁场作用下, 微胶囊表现出良好的磁定向运动性能, 为磁靶向药物输送提供基础.  相似文献   

5.
In our previous study, chitosan–alginate microcapsules were developed to protect egg yolk immunoglobulin (IgY) from gastric inactivation. The present study was undertaken to determine the effect of chitosan concentration (0–0.8%; w/v) on various properties of the microcapsules in order to produce the optimum chitosan–alginate microcapsules for use in the oral delivery of IgY. The properties investigated included microcapsule morphology, loading capacity for IgY (expressed as the IgY loading percentage, w/w, of microcapsules), encapsulation efficiency (EE%), in vitro gastroresistance, and IgY release. IgY loading percentage and EE% were both highest at 0.2% (w/v) chitosan, and, above this level, further increases were not observed. The stability of IgY in simulated gastric fluid (pH 1.2) was significantly improved by encapsulation in alginate microcapsules (IgY retained 43.5% of its activity) and was further improved by including chitosan at any of the chitosan concentrations assessed (IgY retained an average of 69.4% activity) although there was no difference in protection of gastric inactivation among concentrations of chitosan varying from 0.05% to 0.8% (w/v). Higher chitosan concentrations (i.e., ≥0.2%; w/v) prolonged the release of IgY from the microcapsules during simulated intestinal fluid incubation (pH 6.8). However, above the 0.2% (w/v) level, no significant differences were observed. We conclude that the optimum chitosan concentration for microencapsulation is 0.2% (w/v).  相似文献   

6.
Hydrogen exchange reactions between lithium and sodium compounds, MX (M=Li: X=H, CH3, NH2, OH, F; M=Na: X=CH3), and the corresponding hydrides, HX, have been modelled by means of ab initio calculations including electron correlation and zero point energy (ZPE) corrections. Small or no activation barriers (from the initial complexes) are encountered in systems involving lone pairs (10.8, 2.4, 0.0 kcal/mol for X=NH2, OH, F, respectively). Since the association energies of the initial complexes are much larger (21.0, 20.4, 23.5 kcal/mol, respectively; MP2/6–31+G*/6–31+G* + ZPE), such exchange reactions should occur spontaneously in the gas phase. The methyl systems (X=CH3) have the largest barriers: 26.7 (M=Li) and 31.7 (M=Na) kcal/mol (MP2/6–31+G*/6–31G* + ZPE), and the initial complexes are only weakly bound. The significance of these systems as models for hydrogen exchange reactions in complexes of electropositive transition metals is discussed. However, the gegenion-free exchange of hydrogen between CH3 and CH4 has a much lower, 11.8 kcal/mol barrier (MP2/6–31+G*/6–31+G* + ZPE). All the transition structures are highly ionic (charges on the metals > +0.8). The effect of aggregation has been considered by examining the hydrogen exchange between (LiX)2 and HX(X=H, CH3, NH2, OH). Although these dimer reactions formally involve six, instead of four electrons, no “aromatic” preference is observed.  相似文献   

7.
The mixed mercury complexes (2XC6H4)2N3HgY (X=CH3, F, Cl, Br, I;Y=SC2H5, SC6H5, SeC6H5) have been prepared. Both the Hg–S and Hg–Se bonds and, in contrast to other mixed triazenato-mercury compounds, the triazenato-mercury bonds have been shown to be kinetically labile on the NMR time scale by means of77Se and199Hg NMR spectroscopy. Evidence has been obtained for the presence of (2XC6H4)2N3HgY together with HgY 2 and [(2XC6H4)2N3]2Hg in solution.
  相似文献   

8.
Medicago lupulina is an ancient edible plant from the Fabaceae family. In this work, two eco-friendly methods for extraction of bioactive phenolics from M. lupulina were developed using mixtures of water with two non-toxic, skin- and environmentally-friendly polyol solvents: glycerol and polypropylene glycol. Ultrasound-assisted extractions were optimized using a Box–Behnken design. The independent variables were the concentration of organic solvent in water (X1), extraction temperature (X2) and time (X3), while the response was phenolic content. The optimum conditions for extraction of polyphenols were (X1, X2, X3): (45%, 70 °C, 60 min) and (10%, 80 °C, 60 min) for glycerol and polypropylene glycol extraction, respectively. The extracts prepared at optimum conditions were rich in phenolic compounds, mainly derivatives of apigenin, kaempferol, luteolin, quercetin, caffeic and ferulic acid, as well as coumestrol. Their cosmeceutical and antidiabetic activity was tested. Both extracts demonstrated notable antioxidant, anti-lipoxygenase and anti-α-amylase activity. In addition to those activities, the glycerol extract efficiently inhibited protein coagulation, elastase and α-glucosidase activity. Glycerol present in the extract displayed enzyme-inhibiting activity in several assays and supported the action of the bioactive constituents. Thus, the optimized glycerol extract is a desirable candidate for direct incorporation in antidiabetic food supplements and cosmeceutical products.  相似文献   

9.
The formation of SiSi-bonds by a photochemical reaction of silylmercury compounds is described. The silylmercury compounds [(X 3Si)3Si]2Hg (X=Cl, OCH3) were synthesized via theVyazankin Hydrid method with (X 3Si)3SiH and Bis(t-butyl)mercury. By UV-irradiation of these products in hexane as a solvent, the oligosilanes [(X 3Si)3Si]2 are formed in good yields. All these compounds are charactericed by spectroscopical methods.
  相似文献   

10.
Summary. Heavier atom containing X 2SiC2, and X 2GeC2 cyclopropenylidenes transform into new silylenes, germylenes, and carbenogermylenes at DFT and ab initio levels (X = H, CN, NH2, and OMe). The number of transformations or rearrangements appear roughly proportional to the covalent radii of the group 14 elements (Ge > Si > C).  相似文献   

11.
The structures of α-X-cyclopropyl and α-X-isopropyl radicals (X = H, CH3, NH2, OH, F, CN, and NC) are reported at the RHF 3-21G level of theory. The isopropyl radicals are pyramidal with out-of-plane angles varying from 12° (X = CN) to 39° (X = NH2), and barriers to inversion ranging from 0.4 kcal/mol (X = H) to 4.0 kcal/mol (X = NH2). The cyclopropyl radicals have larger out-of-plane angles, from 39.9° (X = CN) to 49.4° (X = NH2), and their barriers to inversion, which increase with the inclusion of polarization functions, vary from 5.5 kcal/mol (X = H) to 16.7 kcal/mol (X = F). In both types of radicals the amino group is the most stabilizing substituent, while the α-fluoro has little effect. The β-fluoro group is weakly destabilizing in the cyclopropyl radical. The strain energies of the cyclopropyl radicals (36–43 kcal/mol) are compared with those of similarly substituted anions, cations, and cyclopropanes.  相似文献   

12.
Geometries have been optimized using molecular-orbital calculations (a) with a 4-31G Gaussian basis set for carbanions CH2X? where X = H, CH3, NH2, OH, F, C?CH, CH?CH2, CHO, COCH3, CN, and NO2; and (b) with an STO -3G basis set for methyl acetate and acetyl deprotonated methyl acetate. All the carbanions containing unsaturated substituents are planar, with a considerable shortening of the C? X bond. Carbanions containing saturated substituents are pyramidal with the out-of-plane angle α increasing with the electronegativity of the substituent. Double-zeta basis set calculations give proton affinities over the range 449 (for CH3CH2?) to 355 kcal/mol (for CH2NO2?), with all unsaturated anions having smaller affinities than saturated anions. The correlation of proton affinities with 1s binding energies, and with charges on both the carbon of the anion and on the acidic proton of the neutral molecule are examined.  相似文献   

13.
Two new compounds of the AxMOXO4 family, β-LiVOAsO4 and β-VOAsO4, have been synthesized by solid state reaction and electrochemical lithium deintercalation from β-LiVOAsO4, respectively. Both compounds are isostructural and are built like other β-VOXO4 (X=S, P) by (VO5) chains of distorted VO6 octahedra connected via corner-shared AsO4 tetrahedra. For β-LiVOAsO4 the additional Li+ ions occupy chains of edge-shared octahedra running perpendicularly to the (VO5) chains. The one-dimensional antiferromagnetic behavior suggested by the structure has been experimentaly confirmed. It is shown that lithium deintercalation occurs through a first-order transition at 4.02 V vs Li+/Li0. From chemical bond considerations it is shown why the redox potential of a given transition element M in a six-fold coordination involving (M=O)m+ units lies between those observed in oxides and in M2(XO4)3 compounds with (XO4)n oxo anions (X=S, P, As).  相似文献   

14.
The novel dioxime, (4Z,5E)-pyrimidine-2,4,5,6(1H,3H)-tetraone 4,5-dioxime (H2-PTD) was obtained by the interaction of 6-amino-5-nitrosopyrimidine-2,4(1H,3H)-dione with hydroxylamine hydrochloride. X-ray structural analysis determined the 4Z,5E-configuration of the corresponding monoanion, pyrimidine-2,6(1H,3H)-dione-4-iminole-5-iminolate in the inclusion complexes with diazonia-18-crown-6 (1,4,10,13-tetraoxa-7,16-diazoniacyclooctadecane) (H2-DA18C6)2+ (complex (1), stoichiometry 2 : 1), and its ammonium salt in the complex with the cis-syn-cis isomer of dicyclohexano-18-crown-6(DCHA) (cis-syn-cis-2,5,8,15,18,21-hexaoxatricyclo (20.4.0.09,14)hexacosane) (complex (2), stoichiometry 1 : 1). X-ray data were also obtained for the complex of the product of (H2-PTD) cyclization, (1,2,5)-oxadiazolo(3,4-d)pyrimidine-5,7(4H,6H)-dione (OPD) with diaqua diaza-18-crown-6 (complex (3), stoichiometry 2 : 2 : 1).In (1) the (H-PTD)- anions are joined into dimers through the bifurcated OH...N and OH...O hydrogen bonds and alternate with diazonia-18-crown-6 cations in the chains sustained by the NH(crown) ... O and NH(crown) ...N interactions. The chains are further combined into the 3D network via NH...O(crown) hydrogen bonds. In (2) the self-complementarity of the (H-PTD)- anions facilitates their assembly into the chain via OH...N, NH...O and OH...O interactions. The ammonium cations bridge each anion and the DCHA macrocycle with the formation of a ribbon developed along the [101] direction in the unit cell. Ternary complex (3) is built of the neutral species, diaza-18-crown-6, water molecules and dimers of OPD alternated in the chains and held together by OH...O and NH...O hydrogen bonds.  相似文献   

15.
Potentially bi- and tetra-dentateSchiff bases derived from salicylaldehyde react with hydrated uranyl salts to give complexes: UO2H2 LX 2, UO2H2 LX 2 and UO2(HL)2 X 2 [H2 L=N,N-propane-1,3-diylbis(salicylideneimine), H2 L=N,N-ethylenebis(salicylideneimine) and HL=N-phenylsalicylideneimine;X =Cl, Br, I, NO3 , ClO4 , and NCS]. Because of marked spectral similrities with the structurally known Ca(H2 L) (NO3)2, theSchiff bases are coordinated through the negatively charged phenolic oxygen atoms and not the nitrogen atoms of the azomethine groups which carry the protons transferred from phenolic groups on coordination. Halide, nitrate, perchlorate and thiocyanate groups are covalently bonded to the uranyl ion, resulting a 6-coordinated uranium ion in the halo and thiocyanato complexes and 8-coordinated in nitrato and perchlorato complexes.
Komplexe von Dioxouranyl(VI) mit zwitterionischen Formen von zwei- und vierzähnigen Schiff-Basen
Zusammenfassung Von Salizylaldehyd abgeleitete zwei- und vierzähnigeSchiff-Basen reagieren mit hydratisierten Uranylsalzen zu Komplexen folgenden Typs: UO2H2 LX 2, UO2H2 LX 2 und UO2(HL)2 X 2 [H2 L=N,N-Propan-1,3-diylbis(salicylidenimin), H2 L=N,N-Ethylen-bis(salicylidenimin) und HL=N-Phenylsalicylidenimin;X =Cl, Br, I, NO3 , ClO4 und NCS]. Auf Grund eindeutiger spektraler Ähnlichkeiten mit dem bekannten Ca(H2 L) (NO3)2 wird auf Koordination über die negativ geladenen phenolischen Sauerstoffatome (und nicht über die Azomethin-Stickstoffe) geschlossen. Die AnionenX sind kovalent an das Uranyl-Ion gebunden; damit ergibt sich ein hexakoordiniertes Uranyl-Ion für die Halogen- und Thiocyanat-Komplexe und Oktakoordination für die Nitrat- und Perchlorat-Komplexe.
  相似文献   

16.
Summary.  The complexes RuTp(cod)X (X = Br (2), I (3), CN (4)) have been obtained by the reaction of RuTp(cod)Cl (1) with KX in boiling MeOH in high yields. The cationic complexes [RuTp(cod)(py)]+ (5), [RuTp(cod)(dmso)]+ (6), and [RuTp(cod)(CH3CN)]+ (7) were prepared as the CF3SO3 salts by reacting 1 with 1 equivalent of AgCF3SO3 in the presence of the respective co-ligand in CH2Cl2. The crystal structures of 1, 3, 4, 5, 6, and 7 are reported. Structural features are discussed in conjunction with 1H, 13C, and 15N NMR spectroscopic data revealing a linear correlation of 15N chemical shifts and Ru-N (trans to X(L)) bond distances. Received August 31, 2000. Accepted (revised) October 23, 2000  相似文献   

17.
Summary. Conformational analysis and frequency calculation were achieved for 1-phenyl-1,2-propandione 1-oxime and its four tautomers: 1-nitroso-1-phenyl-1-propen-2-ol, 1-nitroso-1-phenyl-2-propanone, 2-hydroxy-1-phenyl-propenone oxime, and 3-nitroso-3-phenyl-propen-2-ol. Calculations were carried out at the Hartree–Fock (HF), Density Functional Theory (B3LYP), and the second-order M?llerPlesset perturbation (MP2) levels of theory using 6-31G* and 6-311G** basis sets. Five conformers with no imaginary vibrational frequency were obtained by free rotations around three single bonds of 1-phenyl-1,2-propandione-1-oxime: Ph–C(NOH)C(O)CH3, PhC(NOH)–C(O)CH3, and PhC(N–OH)C(O)CH3. Similarly, eight structures with no imaginary vibrational frequency were encountered upon rotations around three single bonds of 1-nitroso-1-phenyl-1-propen-2-ol: Ph–C(NO)C(OH)CH3, PhC(N–O)C(OH)CH3, and PhC(NO)C(–OH)CH3. In the same manner, six minima were found through rotations around three single bonds of 1-nitroso-1-phenyl-2-propanone: Ph–CH(NO)C(O)CH3, PhCH(–NO)C(O)CH3, and PhCH(NO)–C(O)CH3. Also, two minima were found through rotations around four single bonds of 2-hydroxy-1-phenyl-propenone oxime: Ph–C(NOH)C(OH)CH2, PhC(N–OH)C(OH)CH2, PhC(NOH)–C(OH)CH2, and Ph-C(NOH)C(–OH)CH2. Finally, two minima were found through rotations around four single bonds of 3-nitroso-3-phenyl-propen-2-ol: Ph–CH(NO)C(OH)CH2, PhCH(–NO)C(OH)CH2, PhCH(NO)–C(OH)CH2, and PhCH(NO)C(–OH)CH2. Interconversions within the above sets of conformers were probed through scanning (one and/or two dimensional), and/or QST3 techniques. The order of the stability of global minima encountered was: 1,2-propandione-1-oxime > 1-nitroso-1-phenyl-2-propanone > 1-nitroso-1-phenyl-1-propen-2-ol > 2-hydroxy-1-phenyl-propenone oxime > 3-nitroso-3-phenyl-propen-2-ol. Hydrogen bonding appears significant in tautomers of 1-nitroso-1-phenyl-1-propen-2-ol and 2-hydroxy-1-phenyl-propenone oxime. The CIS simulated λmax for the first excited singlet state (S1) of 1-phenyl-1,2-propandione 1-oxime is 300.4 nm, which was comparable to its experimental λmax of 312.0 nm. The calculated IR spectra of 1-phenyl-1,2-propandione 1-oxime and its tautomers were compared to the experimental spectra.  相似文献   

18.
Alginate‐chitosan microcapsules to control the release of Tramadol‐HCl were prepared using two different methods. In the two‐stage procedure (Variant I) alginate was first pumped into a CaCl2/NaCl solution and then transferred into a chitosan solution. In the one‐stage procedure (Variant II) alginate was directly pumped into a chitosan/CaCl2 solution, and different behavior could be noted in each case. The microcapsules were spherical in both variants and they swelled to a greater extent in a basic medium as compared to an acid one. The drug release profile of Tramadol from microcapsules in simulated gastric fluid and simulated intestinal fluid was also studied. The maximum release of Tramadol at 24 h was 64% and 86% for Variant I and II, respectively, in simulated intestinal fluid. Release was adjusted using the power law of the semi‐empirical Peppas equation in order to gain information about the release mechanism. In both cases the values of the exponent were found to be between 0.53 and 0.84 for swellable microcapsules in simulated gastric and intestinal fluids, respectively, indicating anomalous drug transport for both variants. The good results obtained with alginate‐chitosan microcapsules are comparable to those of the best products so far described in the scientific bibliography and in addition, chitosan is useful in pharmacy.

Surface morphology of Tramadol‐loaded microcapsule.  相似文献   


19.
The structures and relative stabilities of a series of disulfide (XSSX) and thiosulfoxide (X2SS) isomers have been studied for X = F, Cl, CH3, and H, using various levels of conventional ab initio and density functional theory (DFT). The XSSX isomers are more stable than the X2SS isomers for all substituents. The energy gap ΔE(X) between the two isomers increases (i.e., XSSX becomes more stable with respect to X2SS), and the S? S bond contracts in the series for X = F, Cl, CH3, H. The results are interpreted by means of natural population analysis (NPA) (e.g., the interaction between the disulfide moiety S and the two substituents X·). The bonding in the hypervalent X2SS species is similar to the bonding in the nonhypervalent XSSX and does not involve a special role for sulfur-3d orbitals. These orbitals acquire only minimal populations and are not to be conceived as valence orbitals. The DFT and conventional ab initio results, Xα/DZP and MP2/6-31G** optimized structures and isomerization energies (at the highest levels of both methods), agree well. © 1995 by John Wiley & Sons, Inc.  相似文献   

20.
苯乙烯基-β-萘噻唑染料电子光谱的含时密度泛函研究   总被引:6,自引:0,他引:6  
对苯乙烯基-β-萘噻唑染料系列用量子化学密度泛函方法(DFT)在B3LYP/6-31g水平上进行了几何构型全优化, 探讨了苯环对位上不同的取代基CH3, OCH3, N(CH3)2, 3,4-OCH2O, NO2等对分子电荷转移、前线轨道能量和电子光谱等性质的影响规律, 在此基础上采用含时密度泛函方法(TD-DFT)计算了分子第一激发态的电子跃迁能, 得到最大吸收波长λmax. 计算结果表明, 上述5种取代基的引入, 均导致最大吸收波长红移. 与实验λmax结果相比, 理论计算最大相对偏差为0.0501, 最小相对偏差为0.0085.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号