首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-fast x-ray-dynamic experimental subsystem is a facility which can provide femtosecond hard x-ray sources using a femtosecond laser interacting with plasmas. By utilizing these ultra-fast x-rays as a probe, combined with a naturally synchronized driver laser as a pump, we can perform dynamic studies on samples with a femtosecond time resolution.This subsystem with a four-dimensional ultra-high spatiotemporal resolution is a powerful tool for studies of the process of photosynthesis, Auger electron effects, lattice vibrations, etc. Compared with conventional x-ray sources based on accelerators, this table-top laser-driven x-ray source has significant advantages in terms of the source size, pulse duration,brightness, flexibility, and economy. It is an effective supplement to the synchrotron light source in the ultrafast detection regime.  相似文献   

2.
We report on a new technique to reconstruct the 3D dielectric function change in transparent dielectric materials and the application of the technique for on-line monitoring of refractive index modification in BK7 glass during direct femtosecond laser microfabrication. The complex optical field scattered from the modified region is measured using two-beam, single-shot interferogram and the distribution of the modified refractive index is reconstructed by numerically solving the inverse scattering problem in Born approximation. The optical configuration suggested is further development of digital holographic microscopy. It takes advantage of high spatial resolution and almost the same optical paths for both interfering beams, and allows ultrafast time resolution.  相似文献   

3.
The following tutorial review is directed to graduate students willing to be part of the emerging field of ultrafast structural dynamics. It provides them with an introduction to the field and all the very basic assumptions and experimental tricks involved in femtosecond (fs) diffraction techniques. The concept of stroboscopic photography and its implication in ultrafast science are introduced. Special attention is paid to the generation of ultrashort electron and hard X-ray pulses in table top setups, and a direct comparison in terms of brightness and temporal resolution between current table top and facility-based methodologies is given for proper calibration. This review is focused on ultrafast X-ray and electron diffraction techniques. The progress in the development of fs-structural probes during the last twenty years has been tremendous. Current ultrafast structural probes provide us with the temporal and spatial resolutions required to observe atoms in motion. Different compression approaches have made it possible the generation of ultrashort and ultrabright electron pulses with an effective brightness close to that of fs-hard X-ray pulses produced by free electron lasers. We now have in hand a variety of ultrafast structural cameras ready to be applied for the study of an endless list of dynamical phenomena at the atomic level of inspection.  相似文献   

4.
时间和空间上实时观测原子运动对于自然科学研究有着非常重大的意义, 而超快电子衍射(UED)技术同时具备飞秒激光脉冲的高时间分辨特性和电子衍射技术的高空间特性, 可以为实时观测原子级分辨尺度物质的结构变化提供一种有效工具. 本文综述了超快电子衍射技术的发展历史、实验方法以及相关应用, 并且展望了超快电子衍射技术未来的发展.  相似文献   

5.
纳秒激光冲击加载的全过程诊断   总被引:1,自引:0,他引:1       下载免费PDF全文
 与传统的冲击加载方式相比,激光驱动试样具有微尺寸(直径小于1 mm,厚度约10 μm)、超短作用过程(纳秒量级)等特点,但其速度变化历史的实时诊断颇为困难,因此发展适用于激光驱动的高时空分辨率的实时测试技术是十分重要和有价值的。采用桌面式脉冲Nd:YAG激光器作为加载平台,发展了激光加载下的小焦点多普勒光纤探针测量系统(焦斑直径约200 μm,时间分辨力约50 ps),成功实现了从激光脉冲驱动微尺寸飞片飞行直至撞击Z-切石英试样的全过程实时诊断。实验结果显示,将6 μm 厚Al箔飞片驱动至2.48 km/s时,撞击Z-切石英试样的粒子速度为1.27 km/s,与Hugoniot理论计算结果相符,表明该测试技术是可靠、有效的;多层薄膜靶结构设计(基底/烧蚀层/硅油/Al箔)可提升激光与靶物质的能量耦合效率,使飞片保持更好的宏观完整性。为开展超短脉冲激光加载下材料动态特性研究提供了一种有效的技术途径。  相似文献   

6.
飞秒物理、飞秒化学和飞秒生物学   总被引:7,自引:0,他引:7  
马国宏  郭立俊  钱士雄 《物理》2001,30(6):349-355
飞秒激光技术因其极高的时间分辨特性而被广泛应用于研究多种材料的超快过程,文章从几个侧面就飞秒技术在物理学,化学及生物学等方面的应用作了介绍,在飞秒物理方面,介绍了飞秒技术在研究半导体量子阱材料,纳米材料的性质及高次谐波产生等方面的研究进展,飞秒化学则主要介绍了飞秒技术在研究光化学反应,光解离过程、键的断裂及结合以及相关的动力学过程的应用;在生物方面,则介绍利用飞秒技术研究光合作用中的能量传递过程,视觉系统中的光致异构化过程以及DNA中的电荷传递及质子传递等过程的研究现状。  相似文献   

7.
The formation and evolution of femtosecond laser plasma produced in microvolumes of gases at different pressures upon their multiply ionization by high intensity pulses of fundamental and second harmonics of a Ti:sapphire laser is studied. The interferometric technique for precise ultrafast optical diagnostics of such plasma was applied. The numerical technique of interferogram processing and reconstruction of instant spatial distribution of refractive index and free electron density in laser-induced plasma applied for this proposes is described. The spatiotemporal distribution of the refractive index and free electron density were studied with a spatial resolution of ~1 μ m and a temporal resolution of ~70 fs.  相似文献   

8.
超快电子衍射(UED)技术因其同时具有亚皮秒的时间分辨和亚毫埃的空间分辨能力,成为研究物质瞬态结构变化,特别是研究晶格材料超快动力学的有力工具.应用国内首台自行研制的UED系统,我们实时测量了超快激光脉冲激发下,20 nm金属Al多晶薄膜产生的相干声子和晶格热运动.实验结果显示,在晶格热运动加剧的同时,热应力的作用使晶格产生了相干振荡,并最终膨胀达到新的平衡位置.实验中测得的振荡周期以及晶格上升的温度与理论计算的结果符合较好,展示了UED技术在超快晶格动力学研究方面的广阔应用前景 关键词: 超快电子衍射 相干声子 晶格热运动  相似文献   

9.
We present a new approach (demonstrated experimentally and through modeling) to characterize the spectral envelope of a terahertz (THz) pulse in a single shot. The coherent THz pulse is produced by a femtosecond electron bunch and contains information on the bunch duration. The technique, involving a single low-power laser probe pulse, is an extension of the conventional spectral encoding method (limited in time resolution to hundreds of femtoseconds) into a regime only limited in resolution by the laser pulse length (tens of femtoseconds). While only the bunch duration is retrieved (and not the exact charge profile), such a measurement provides a useful and critical parameter for optimization of the electron accelerator.  相似文献   

10.
Application of time-resolved femtosecond spectroscopy to the investigation of the ultrafast electron kinetics in metallic materials is reviewed. The main experimental techniques are presented and the results obtained on electron scattering processes discussed in bulk metals and nanoparticles, focusing on the energy redistribution processes (electron–electron and electron–phonon coupling) and electronic transport. Application of the femtosecond techniques to the investigation of the acoustic vibrations of metal films and nanoparticles is also presented.  相似文献   

11.
A theoretical study of different ultrafast nonequilibrium processes taking place during and after ultrashort excitation of clusters is presented. We discuss similarities and differences for several processes involving nonequilibrium ultrafast motion of atoms and electrons. We study ultrashort relaxation of clusters in response to excitations produced by femtosecond laser pulses of different intensities. We show how different relaxation processes, such as bond breaking, melting, fragmentation, emission of atoms, or Coulomb explosion, can be induced, depending on the laser intensity and laser pulse duration. We also discuss processes involving nonequilibrium electron dynamics, such as intraband Auger decay in clusters and ultrafast electronic motion during collisions between clusters and surfaces. We show that this electron dynamics leads to Stückelberg-like oscillations of measurable quantities, such as the electron emission yield. Received: 4 April 2000 / Accepted: 6 November 2000 / Published online: 9 February 2001  相似文献   

12.
Real-time single-shot measurement of the femtosecond electron beam duration in laser wakefield accelerators is discussed for both experimental design and theoretical analysis that combines polarimetry and interferometry.The probe pulse polarization is rotated by the azimuthal magnetic field of the electron beam and then introduced into a Michelson-type interferometer for self-interference. The electron beam duration is obtained from the region size of the interference fringes, which is independent of the pulse width of the probe laser. Using a larger magnification system or incident angle, the measurement resolution can be less than 1 fs.  相似文献   

13.
The development of a method for exploring the ultrafast transient dynamics in small organized structures with high spatial resolution is expected to be a basis for further advances in current science and technology. Recently, we have developed a new microscopy technique by combining scanning tunneling microscopy (STM) with ultrashort-pulse laser technology, which enables the visualization of ultrafast carrier dynamics even on the single-atomic level. A nonequilibrium carrier distribution is generated using ultrashort laser pulses and its relaxation processes are probed by STM using the optical pump-probe method realized in STM by the pulse-picking technique. In this paper, the fundamentals of the new microscopy technique are overviewed.  相似文献   

14.
飞秒电子衍射系统的静态特性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
超快电子衍射系统是认识超快物理、化学及生物过程的重要工具之一.介绍了自主研制的一套飞秒电子衍射系统,调试并测量了该系统的电子束斑特性、X-Y偏转板的偏转灵敏度等.在该系统上进行了金膜的静态电子衍射图像的测量. 关键词: 飞秒电子衍射 偏转灵敏度 时间分辨 空间分辨  相似文献   

15.
飞秒脉冲测量技术   总被引:7,自引:0,他引:7  
王兆华  魏志义  张杰 《物理》2002,31(10):659-666
随着飞秒激光技术的发展,飞秒激光脉冲的准确测量已成为非常重要的研究内容。文章在简要概述几种常见测量方法的基础上,着重综述了近年来发展起来的光学频率光栅开关法(FROG)及自参考光谱位相相干电场重建法(SPIDER),并介绍了文章作者进行的相关工作。  相似文献   

16.
Femtosecond‐laser micromachining has been developed as one of the most efficient techniques for direct three‐dimensional microfabrication of transparent optical materials. In integrated photonics, by using direct writing of femtosecond/ultrafast laser pulses, optical waveguides can be produced in a wide variety of optical materials. With diverse parameters, the formed waveguides may possess different configurations. The paper by F. Chen and J.R. Vázquez de Aldana (pp. 251–275) focuses on crystalline dielectric materials, and is a review of the state‐of‐the‐art in fabrication, characterization and applications of femtosecond‐laser micromachined waveguiding structures in optical crystals and ceramics.  相似文献   

17.
An open question about the dynamical behavior of materials is how phase transition occurs in highly nonequilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to nonthermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reaches a critical value.  相似文献   

18.
Femtosecond x-ray laser flashes with power densities of up to 10(14) W/cm(2) at 13.7 nm wavelength were scattered by single xenon clusters in the gas phase. Similar to light scattering from atmospheric microparticles, the x-ray diffraction patterns carry information about the optical constants of the objects. However, the high flux of the x-ray laser induces severe transient changes of the electronic configuration, resulting in a tenfold increase of absorption in the developing nanoplasma. The modification in opaqueness can be correlated to strong atomic charging of the particle leading to excitation of Xe(4+). It is shown that single-shot single-particle scattering on femtosecond time scales yields insight into ultrafast processes in highly excited systems where conventional spectroscopy techniques are inherently blind.  相似文献   

19.
介绍一种使用闪烁体耦合电子倍增电荷耦合器件(EMCCD)的方式对离子进行记录的汤姆逊能谱仪,可实现对离子能谱的实时单发测量。同时,该谱仪利用倾斜电极板对离子进行偏转,可减少由于离子打在电极板上产生的电磁噪声,能够提高实验结果的信噪比。该谱仪在北京大学4.5 MV静电加速器和2×6MV串列加速器上进行了标定实验,测量了闪烁体将离子转化成光子后的探测效率,实验结果也验证了该谱仪的可行性和稳定性。该汤姆逊谱仪将用于北京大学激光加速器CLAPA对离子束流的测量研究。  相似文献   

20.
Terahertz(THz) waves have shown a broad prospect in the analysis of some dielectric materials because of their special properties. For the ultrafast irreversible processes, the THz single-shot measurement is a good choice. In this paper,a single-shot system is investigated, where a pump beam is used to generate THz pulses with high electrical field by optical rectification in LiNbO_3, the probe beam with wavefront tilted by a blazed grating is used for single-shot measurement. The time window is up to 90 ps, the signal to noise ratio is 2000 : 1, the spectrum covers from 0.1 THz to about 2.0 THz, and the spectral resolution is 0.011 THz. The single-shot measurement result agrees well with that of a traditional electrical-optic sampling method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号