首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The first dinuclear iron(II) complexes of any 4-substituted 3,5-di(2-pyridyl)-4H-1,2,4-triazole ligands, [Fe(II)2(adpt)2(H2O)1.5(CH3CN)2.5](BF4)4 and [Fe(II)2(pldpt)2(H2O)2(CH3CN)2](BF4)4, are presented [where adpt is 4-amino-3,5-di(2-pyridyl)-4H-1,2,4-triazole and pldpt is 4-pyrrolyl-3,5-di(2-pyridyl)-4H-1,2,4-triazole]. Both dinuclear complexes feature doubly triazole bridged iron(II) centers that are found to be [high spin-high spin] at all temperatures, 4-300 K, and to exhibit weak antiferromagnetic coupling. In the analogous monometallic complexes, [Fe(II)(Rdpt)2(X)2](n+), the spin state of the iron(II) center was controlled by appropriate selection of the axial ligands X. Specifically, both of the chloride complexes, [Fe(II)(adpt)2(Cl)2] x 2 MeOH and [Fe(II)(pldpt)2(Cl)2] x 2 MeOH x H2O, were found to be high spin whereas the pyridine adduct [Fe(II)(adpt)2(py)2](BF4)2 was low spin. Attempts to prepare [Fe(II)(pldpt)2(py)2](BF4)2 and the dinuclear analogues [Fe(II)2(Rdpt)2(py)4](BF4)4 failed, illustrating the significant challenges faced in attempts to develop control over the nature of the product obtained from reactions of iron(II) and these bis-bidentate ligands.  相似文献   

2.
Dicopper(II) complexes of two new 3,5-disubstituted-pyrazole-based ligands, bis(quadridentate) macrocyclic ligand (L1)(2-) and bis(terdentate) acyclic ligand (L2)(-), were synthesised by Schiff base condensation of 3,5-diformylpyrazole and either one equivalent of 1,3-diaminopropane or two equivalents of 2-(2-aminoethyl)pyridine in the presence of one or two equivalents of copper(II) ions, respectively. Copper(II) acetate monohydrate was employed in the synthesis of [Cu(2)(L1)(OAc)(2)], [Cu(2)(L2)(H(2)O)(2)(OAc)(3)] and [Cu(II)(2)(L1)(NCS)(2)]; in the last of these one equivalent of NaNCS per copper(II) ion was also added. The fourth complex, [Cu(2)(L2)(NCS)(2)(DMF)]BF(4), was prepared using copper(II) tetrafluoroborate hexahydrate, along with two equivalents of NaOH and six of NaSCN. All four of these dimetallic complexes have been characterised by single crystal X-ray diffraction: the two macrocyclic complexes are the first such Schiff base complexes to be so characterised. A feature common to all four of the structures is bridging of the two copper(II) centres by the pyrazolate moiety/moieties. The structure determinations show that the coordination mode of the acetate groups in both [Cu(2)(L1)(OAc)(2)].2MeOH.H(2)O and [Cu(2)(L2)(H(2)O)(2)(OAc)(3)] is unidentate as had been tentatively predicted by analysis of the infrared spectra (DeltaOCO of 199 and 208 cm(-1), respectively). The magnetochemical studies of the macrocyclic complexes, over the temperature range 4-300 K, revealed strong antiferromagnetic coupling with J = -169 and -213 cm(-1) for [Cu(2)(L1)(OAc)(2)].2H(2)O and [Cu(II)(2)(L1)(NCS)(2)].DMF respectively. The J values have been discussed in relation to a published correlation involving the CuN(pyrazolate)N(pyrazolate) angles.  相似文献   

3.
Two stable nanofluids comprising of mixed valent copper(I,II) oxide clusters (<1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(4)mim][OAc], and copper(II) oxide nanoparticles (<50 nm) suspended in trioctyl(dodecyl)phosphonium acetate, [P(8 8 8 12)][OAc], were synthesised in a facile one-pot reaction from solutions of copper(II) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using (13)C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)(2) in 1-ethyl-3-methylimidazolium acetate, [C(2)mim][OAc], crystals were obtained that revealed the structure of [C(2)mim][Cu(3)(OAc)(5)(OH)(2)(H(2)O)]·H(2)O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry.  相似文献   

4.
Du M  Bu XH  Guo YM  Liu H  Batten SR  Ribas J  Mak TC 《Inorganic chemistry》2002,41(19):4904-4908
The synthesis and crystal structure of the three-dimensional coordination polymer of an angular dipyridyl ligand 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (L) and Cu(ClO(4))(2), exhibiting the first Cu(II) diamondoid network with 2-fold interpenetration, ([Cu(L)(2)(H(2)O)(2)](ClO(4))(OH)(H(2)O)(2.5))(n) (1), together with the Cu(OAc)(2) complex of L, [Cu(L)(2)(OAc)(2)(H(2)O)](H(2)O)(2)(CH(3)OH) (2), with an unexpected mononuclear structure, are reported. Crystal data for 1: tetragonal, space group I4(1)/a, a = b = 13.477(3) A, c = 46.167(13) A, Z = 8. Crystal data for 2: triclinic, space group P(-)1, a = 7.847(2) A, b = 13.189(4) A, c = 15.948(5) A, alpha = 75.225(7) degrees, beta = 79.945(6) degrees, gamma = 77.540(5) degrees, Z = 2. The magnetic properties and anion effect are also discussed.  相似文献   

5.
One-pot solvothermal treatments of organonitriles, ammonia, and Cu(II) salts yielded Cu(I) and 3,5-disubstituted 1,2,4-triazolates. The organic triazolate components were derived from copper-mediated oxidative cycloaddition of nitriles and ammonia, in which a key intermediate 1,3,5-triazapentadienate was isolated as [Cu(II)(4-pytap)(2)] (4-Hpytap = 2,4-di(4-pyridyl)-1,3,5-triazapentadiene) via controlled solvothermal conditions. This intermediate could also be synthesized by Ni(II)-mediated reactions; however, the final triazoles were obtained only when Cu(II) was employed. Therefore, the reaction mechanism of these reactions was elucidated as follows: nitrile was first attacked by ammonia to form the amidine, which further reacted with another nitrile or self-condensed to yield 1,3,5-triazapentadiene, which was coordinated to two Cu(II) ions in its deprotonated form. A two-electron oxidation of the 1,3,5-triazapentadienate mediated by two Cu(II) ions gave one triazolate and Cu(I) cations. Other in situ ligand reactions, such as C-C bond cleavage and hydrolysis, were also found for the nitriles under these solvothermal conditions. Another remarkable feature of these crystalline Cu(I) triazolates is their simple, typical 3- or 4-connected network topologies. The self-assembly of these nets is presumably controlled by steric hindrance, which is subsequently applied to the rational design of the close-packed 2D networks [Cu(I)(tz)](infinity) and [Ag(I)(tz)](infinity) (Htz = 1,2,4-triazole), as well as the porous 3D network [Cu(I)(etz)](infinity) (Hetz = 3,5-diethyl-1,2,4-triazole). The interesting photoluminescence properties of these coinage d(10) metal complexes were also investigated.  相似文献   

6.
Two new trinuclear copper(II) complexes, [Cu(3)(μ(3)-OH)(daat)(Hdat)(2)(ClO(4))(2)(H(2)O)(3)](ClO(4))(2)·2H(2)O (1) and [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](ClO(4))(2)·3H(2)O (2) (daat = 3,5-diacetylamino-1,2,4-triazolate, Hdat = 3,5-diamino-1,2,4-triazole, and aaat = 3-acetylamino-5-amino-1,2,4-triazolate), have been prepared from 1,2,4-triazole derivatives and structurally characterized by X-ray crystallography. The structures of 1 and 2 consist of cationic trinuclear copper(II) complexes with a Cu(3)OH core held by three N,N-triazole bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with distorted square-pyramidal geometries. The magnetic properties of 1 and 2 and those of five other related 1,2,4-triazolato tricopper(II) complexes with the same triangular structure (3-7) (whose crystal structures were already reported) have been investigated in the temperature range of 1.9-300 K. The formulas of 3-7 are [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](NO(3))(2)·H(2)O (3), {[Cu(3)(μ(3)-OH)(aat)(3)(μ(3)-SO(4))]·6H(2)O}(n) (4), and [Cu(3)(μ(3)-OH)(aat)(3)A(H(2)O)(2)]A·xH(2)O [A = NO(3)(-) (5), CF(3)SO(3)(-) (6), or ClO(4)(-) (7); x = 0 or 2] (aat =3-acetylamino-1,2,4-triazolate). The magnetic and electron paramagnetic resonance (EPR) data have been analyzed by using the following isotropic and antisymmetric exchange Hamiltonian: H = -J[S(1)S(2) + S(2)S(3)] - j[S(1)S(3)] + G[S(1) × S(2) + S(2) × S(3) + S(1) × S(3)]. 1-7 exhibit strong antiferromagnetic coupling (values for both -J and -j in the range of 210-142 cm(-1)) and antisymmetric exchange (G varying from to 27 to 36 cm(-1)). At low temperatures, their EPR spectra display high-field (g < 2.0) signals indicating that the triangles present symmetry lower than equilateral and that the antisymmetric exchange is operative. A magneto-structural study showing a lineal correlation between the Cu-O-Cu angle of the Cu(3)OH core and the isotropic exchange parameters (J and j) has been conducted. Moreover, a model based on Moriya's theory that allows the prediction of the occurrence of antisymmetric exchange in the tricopper(II) triangles, via analysis of the overlap between the ground and excited states of the local Cu(II) ions, has been proposed. In addition, analytical expressions for evaluating both the isotropic and antisymmetric exchange parameters from the experimental magnetic susceptibility data of triangular complexes with local spins (S) of (1)/(2), (3)/(2), or (5)/(2) have been purposely derived. Finally, the magnetic and EPR results of this work are discussed and compared with those of other tricopper(II) triangles reported in the literature.  相似文献   

7.
A family of coordination polymers formed by the reaction of copper(I) iodide with a range of angular bidentate or tridentate N-donor ligands is reported. The framework polymers [CuI(dpt)](infinity) 1 [dpt = 2,4-bis(4-pyridyl)-1,3,5-triazine], [CuI(dpb)](infinity) 2 [dpb = 1,4-bis-(4-pyridyl)-benzene], [(CuI)3(dpypy)2](infinity) 3, [CuI(dpypy)](infinity) 4 [dpypy = 3,5-bis(4-pyridyl)-pyridine], and [Cu3I3(pypm)](infinity) 5 [pypm = 5-(4-pyridyl)pyrimidine] have been prepared and structurally characterized. It was found that the angular nature of the dpypy and dpt ligands favors the formation of discrete (CuI)2 dimeric subunits as observed in [CuI(dpt).MeCN](infinity) 1 and [(CuI)3(dpypy)2](infinity) 3. In contrast, reaction with the linear ligand dpb affords [CuI(dpb)](infinity) 2 which incorporates a one-dimensional (CuI)(infinity) chain structure. Moreover, the additional donor available on the central ring of the dpypy ligand generates a novel two-dimensional bilayer structure in 3, in contrast to the one-dimensional ribbon structure observed in the case of 1. Interestingly, the bilayer structure of 3 additionally exhibits 2-fold interpenetration. The reaction of CuI with dpypy produces not only 3 but a further product [CuI(dpypy)](infinity) 4 that has been characterized as a one-dimensional chain constructed from trigonal-planar Cu(I) centers bridged by bidentate dpypy ligands. Compound 5, [Cu3I3(pypm)](infinity), exhibits a highly unusual three-dimensional structure in which the pypm ligand bridges two-dimensional brick-wall (CuI)(infinity) sheets.  相似文献   

8.
Centrosymmetric [Cu(2)(μ-X)(μ-L(m)*)(2)](ClO(4))(3) (X = F(-), Cl(-), Br(-), OH(-), L(m)* = m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene)], the first example of a series of bimetallic copper(II) complexes linked by a linearly bridging mononuclear anion, have been prepared and structurally characterized. Very strong antiferromagnetic exchange coupling between the copper(II) ions increases along the series F(-) < Cl(-) < OH(-) < Br(-), where -J = 340, 720, 808, and 945 cm(-1). DFT calculations explain this trend by an increase in the energy along this series of the antibonding antisymmetric combination of the p orbital of the bridging anion interacting with the copper(II) d(z(2)) orbital.  相似文献   

9.
Copper K-edge X-ray absorption spectroscopic (XAS) measurements were recorded for the veterinary antiinflammatory Cu(II) complexes of indomethacin (1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid = IndoH), of the general formula [Cu(2)(Indo)(4)L(2)] (L = N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-methylpyrrolidone (NMP), and water), and [Cu(2)(OAc)(4)(OH(2))(2)] at room temperature and 10 K. The bond lengths and bridging O-C-O angles of the dimeric Cu(II) cage (Cu(2)O(10)C(8)) obtained from the multiple-scattering (MS) fitting of the X-ray absorption fine structure (XAFS) using a centrosymmetric model of [Cu(2)(Indo)(4)(DMF)(2)] gave Cu.Cu = 2.62(2) A, mean Cu-O(Ac) = 1.95(2) A, Cu-O(L) = 2.15(2) A, bridging O-C-O = 125(1) degrees, Cu displacement from plane 0.19 A compared with the XRD data Cu.Cu = 2.630(1) A, mean Cu-O(Ac) = 1.959 A, Cu-O(L) = 2.143(5) A, bridging O-C-O angles = 123.2(5) degrees, Cu displacement from plane 0.20 A. The excellent agreement between the XAFS- and XRD-derived data allowed the structures of related [Cu(2)(Indo)(4)L(2)] (L = DMA, NMP) complexes to be determined. All display a similar Cu(2)O(10)C(8) coordination geometry, which is independent of the nature of the axial ligand. While XAFS analysis of [Cu(2)(Indo)(4)(OH(2))(2)] and [Cu(2)(OAc)(4)(OH(2))(2)] indicates a coordination geometry similar to that of [Cu(2)(Indo)(4)L(2)] (L = DMF, DMA, NMP), removal of symmetry restraints in the MS model is required to obtain axial bond lengths comparable to those derived in the XRD structures of the acetate complex. For the Indo complex, the fitted bond lengths with the lower symmetry model give a mean Cu-L(OH2) bond distance within experimental errors of the value for [Cu(2)(Indo)(4)(DMSO)(2)] (2.16(2) A) (XRD). The difficulty in refining the Cu-O(OH2) distance of [Cu(2)(OAc)(4)(OH(2))(2)] and [Cu(2)(Indo)(4)(OH(2))(2)] using a centrosymmetric MS model is attributed to a symmetry reduction due to hydrogen-bonding effects characteristic of the aqua adducts, as is observed in the XRD structure of the acetate complex.  相似文献   

10.
Seven new pyridine dicarboxamide ligands H2L(1-7) have been synthesised from condensation reactions involving pyridine-2,6-dicarboxylic acid (H2dipic), pyridine-2,6-dicarbonyl dichloride or 2,6-diaminopyridine with heterocyclic amine or carboxylic acid precursors. Crystallographic analyses of N,N'-bis(2-pyridyl)pyridine-2,6-dicarboxamide monohydrate (H2L8 x H2O), N,N'-bis[2-(2-pyridyl)methyl]pyridine-2,6-dicarboxamide and N,N'-bis[2-(2-pyridyl)ethyl]pyridine-2,6-dicarboxamide monohydrate revealed extensive intramolecular hydrogen bonding interactions. 2,6-Bis(pyrazine-2-carboxamido)pyridine (H2L6) and 2,6-bis(pyridine-2-carboxamido)pyridine (H2L7) reacted with copper(II) acetate monohydrate to give tricopper(II) complexes [Cu3(L)2(mu2-OAc)2]. X-Ray crystallography confirmed deprotonation of the amidic nitrogen atoms and that the (L6,7)2- ligands and acetate anions hold three copper(II) ions in approximately linear fashion. H2L8. Reacted with copper(II) tetrakis(pyridine) perchlorate to give [Cu(L8)(OH2)]2 x 2H2O, in which (L8)2- was tridentate through the nitrogen atoms of the central pyridine ring and the deprotonated carboxamide groups at one copper centre, with one of the terminal pyridyl rings coordinating to the other copper atom in the dimer. The corresponding reaction using H2L7 gave [Cu3(L7)2(py)2][ClO4]2, which transformed during an attempted recrystallisation from ethanol under aerobic conditions to a tetracopper(II) complex [Cu4(L7)2(L7-O)2].  相似文献   

11.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

12.
Zhou JH  Cheng RM  Song Y  Li YZ  Yu Z  Chen XT  Xue ZL  You XZ 《Inorganic chemistry》2005,44(22):8011-8022
Novel polynuclear Cu(II) complexes containing derivatives of 1,2,4-trizaole and pivalate ligands, [Cu(3)(mu(3)-OH)(mu-adetrz)(2)(piv)(5)(H(2)O)].6.5H(2)O (1) (adetrz = 4-amino-3,5-diethyl-1,2,4-triazole, piv = pivalate), [Cu(4)(mu(3)-OH)(2)(mu-atrz)(2)(mu-piv)(4)(piv)(2)].2MeOH.H(2)O (2) (atrz = 4-amino-1,2,4-triazole), [Cu(4)(mu(3)-OH)(2)(mu-tbtrz)(2)(mu-piv)(2)(piv)(4)].4H(2)O (3) (tbtrz = 4-tert-butyl-1,2,4-trizaole), and [Cu(4)(mu(3)-O)(2)(mu-admtrz)(4)(admtrz)(2)(mu-piv)(2)(piv)(2)].2[Cu(2)(mu-H(2)O)(mu-admtrz)(piv)(4)].13H(2)O [4 = 4a.2(4b).13H(2)O; admtrz = 4-amino-3,5-dimethyl-1,2,4-triazole], have been prepared and structurally characterized. 1 is an asymmetrical triangular complex containing a [Cu(3)(mu(3)-OH)] core with two Cu---Cu edges spanned by bridging adetrz ligands. 2, 3, and 4a are novel tetranuclear compounds containing a [Cu(4)(mu(3)-O)(2)] or [Cu(4)(mu(3)-OH)(2)] core with Cu---Cu edges spanned by bridging 1,2,4-triazole or pivalate ligands. 4b is a dinuclear compound with one admtrz and one water bridge, and it is the first dinuclear Cu(II) triazole complex with one bridging water molecule. 1 is one of few reported triangular Cu(II) complexes with derivatives of 1,2,4-triazole, while 2, 3, and 4a are the first group of the nonlinear tetranuclear Cu(II) compounds with derivatives of 1,2,4-triazole. Variable-temperature magnetic susceptibility studies on the powder samples of 1-3 reveal the overall antiferromagnetic coupling between Cu(II) ions with J values of -55.6 to -12.8 cm(-1) (1), -216.4 to 0 cm(-1) (2), and -259.8 to 4.8 cm(-1) (3).  相似文献   

13.
Halide-centered hexanuclear, anionic copper(II) pyrazolate complexes [trans-Cu(6)((3,5-CF(3))(2)pz)(6)(OH)(6)X](-), X = Cl, Br, I are isolated in a good yield from the redox reaction of the trinuclear copper(I) pyrazolate complex [μ-Cu(3)((3,5-CF(3))(2)pz)(3)] with a halide source such as PPh(3)AuCl or [Bu(4)N]X, X = Cl, Br, or I, in air. X-ray structures of the anion-centered hexanuclear complexes show that the six copper atoms are bridged by bis(3,5-trifluoromethyl)pyrazolate and hydroxyl ligands above and below the six copper atom plane. The anions are located at the center of the cavity and weakly bound to the six copper atoms in a μ(6)-arrangement, Cu-X = ~3.1 ?. A nitrite-centered hexanuclear copper(II) pyrazolate complex [trans-Cu(6)((3,5-CF(3))(2)pz)(6)(OH)(6)(NO(2))](-) was obtained when a solution of [PPN]NO(2) in CH(3)CN was added dropwise to the trinuclear copper(I) pyrazolate complex [μ-Cu(3)((3,5-CF(3))(2)pz)(3)] dissolved in CH(3)CN, in air. Blue crystals are produced by slow evaporation of the acetonitrile solvent. The X-ray structure of [PPN][trans-Cu(6)((3,5-CF(3))(2)pz)(6)(OH)(6)(NO(2))] complex shows the nitrite anion sits in the hexanuclear cavity and is perpendicular to the copper plane with a O-N-O angle of 118.3(7)°. The (19)F and (1)H NMR of the pyrazolate ring atoms are sensitive to the anion present in the ring. Anion exchange of the NO(2)(-) by Cl(-) can be observed easily by (1)H NMR.  相似文献   

14.
The absorption and emission spectra of the Pt(II) complexes containing N wedge C wedge N-coordinating tridentate ligands, platinum(II) 1,3-di(2-pyridyl)benzene chloride [Pt(dpb)Cl] and platinum(II) 3,5-di(2-pyridyl)toluene chloride [Pt(dpt)Cl], together with their corresponding free ligands, 1,3-di(2-pyridyl)benzene (dpbH) and 3,5-di(2-pyridyl)toluene (dptH), have been analyzed by density functional theory (DFT) for the ground state and time-dependent DFT (TDDFT) for the excited states. T(1)(A(1)) and S(1)(B(2)) of the complexes (in C(2)(v) symmetry) were assigned on the basis of the calculated excitation energies as well as comparison of the experimental spectroscopic properties and the calculated states' characteristics. The calculated excitation energies for T(1) and S(1) of the complexes as well as those for T(1) of the free ligands were in good agreement with their observed values within 600 cm(-1). The d-pi* characters of the excited states were evaluated from the change in electron densities between the ground and excited states by Mulliken population analysis; values of 25% for T(1) and 32% for S(1) were obtained for both complexes. The calculated values of d-pi* character were found to be consistent with the reported emission lifetimes as well as the observed emission energy shifts from the corresponding free ligands. Most spectroscopic properties of the complexes and the free ligands, which include solvatochromic shift, Stokes shifts, methyl substitution shifts, and emission spectra profiles, were well explained from the calculation results.  相似文献   

15.
The iron coordination chemistry of 3,5-di(2-pyridyl)-1,2,4-triazoles and 3,5-di(2-pyridyl)-1,2,4-triazolates is reviewed. This includes both mononuclear and dinuclear complexes, and both iron(II) and iron(III) oxidation states. The main focus is on the synthesis, structure and magnetic properties of these complexes.  相似文献   

16.
Cheng L  Zhang WX  Ye BH  Lin JB  Chen XM 《Inorganic chemistry》2007,46(4):1135-1143
The facile and effective one-pot solvothermal syntheses of 3,5-disubstituted 1,2,4-triazole and its derivatives (substituted group = alkyl, aryl, and pyridyl) through cyclocondensations of organonitriles and hydrazine hydrate in the absence/presence of metal salts have been established. By control of the solvothermal conditions and/or the addition of counteranions, different intermediates and final products were derived from various organonitriles, in which an intermediate N,N'-bis(picolinamide)azine (H4bpa) has been successfully trapped in its neutral manganese(II) complexes. A systematical study shows that, after the initial formation of 2-pyridylamidrazone from 2-cyanopyridine and hydrazine, two reaction paths are involved in the formation of 1,2,4-triazoles: via the formation of 3,6-bis(2-pyridyl)-1,2-dihydro-1,2,4,5-tetrazine and H4bpa as intermediates. The tetrazine and H4bpa paths are preferred in the absence and presence of metal ions, respectively. In the presence of metal ions, metal ion binding can stabilize the tautomers, enhance the nucleophilic reactivity of the imino C atom, and inhibit the tautomerization of H4bpa, hence leading to the formation of 1,2,4-triazolates or H4bpa in complexed forms. The in situ cyclocondensation reactions of 2-pyridylamidrazone and carboxylate into asymmetric 3,5-disubstituted 1,2,4-triazolates under solvothermal conditions have also been observed for the first time. Crystal structures of the crystalline metal complexes have been obtained, including dinuclear [Mn2(bpt)2Cl2(H2O)2] (1) and [Mn2(bpt)2(SCN)2(H2O)2] (3; Hbpt = 3,5-bis(2-pyridyl)-4H-1,2,4-triazole), tetranuclear [Mn4(H3bpa)2(mpt)4(N3)2].2H2O (5; Hmpt = 3-methyl-5-(2-pyridyl)-1H-1,2,4-triazole), [Mn4(H3bpa)2(pt)4(N3)2].2C2H5OH (6; Hpt = 5-(2-pyridyl)-1H-1,2,4-triazole), and [Mn4(H3bpa)4(SCN)4].2C2H5OH (7), as well as helical [Cu(bpt)] (2). Among them, 7 is the first example of a neutral tetranuclear [2 x 2] grid manganese(II) complex. Both 5 and 7 exhibit antiferromagnetic interactions.  相似文献   

17.
Hydrothermal reactions of 1,2,4-triazole with the appropriate copper salt have provided eight structurally unique members of the Cu/triazolate/X system, with X = F-, Cl-, Br-, I-, OH-, and SO4(2-). The anionic components X of [Cu3(trz)4(H2O)3]F2 (1) and [Cu6(trz)4Br]Cu4Br4(OH) (4) do not participate in the framework connectivity, acting as isolated charge-compensating counterions. In contrast, the anionic subunits X of [Cu(II)Cu(I)(trz)Cl2] (2), [Cu6(trz)4Br2] (3), [Cu(II)Cu(I)(trz)Br2] (5), [Cu3(trz)I2] (6), [Cu6(II)Cu2(I)(trz)6(SO4)3(OH)2(H2O)] (8), and [Cu4(trz)3]OH.7.5H2O (9.7.5H2O) are intimately involved in the three-dimensional connectivities. The structure of [Cu(II)Cu(I)(trz)2][Cu3(I)I4] (7) is constructed from two independent substructures: a three-dimensional cationic {Cu2(trz)2}n(n+) component and {Cu3I4}n(n-) chains. Curiously, four of the structures are mixed-valence Cu(I)/Cu(II) materials: 2, 5, 7, and 8. The only Cu(II) species is 1, while 3, 4, 6, and 9.7.5H2O exhibit exclusively Cu(I) sites. The magnetic properties of the Cu(II) species 1 and of the mixed-valence materials 5, 7, 8, and the previously reported [Cu3(trz)3OH][Cu2Br4] have been studied. The temperature-dependent magnetic susceptibility of 1 conforms to a simple isotropic model above 13 K, while below this temperature, there is weak ferromagnetic ordering due to spin canting of the antiferromagnetically coupled trimer units. Compounds 5 and 7 exhibit magnetic properties consistent with a one-dimensional chain model. The magnetic data for 8 were fit over the temperature range 2-300 K using the molecular field approximation with J = 204 cm(-1), g = 2.25, and zJ' = -38 cm(-1). The magnetic properties of [Cu3(trz)3OH][Cu2Br4] are similar to those of 8, as anticipated from the presence of similar triangular {Cu3(trz)3(mu3-OH)}(2+) building blocks. The Cu(I) species 3, 4, 6, and 9 as well as the previously reported [Cu(5)(trz)3Cl2] exhibit luminescence thermochromism. The spectra are characterized by broad emissions, long lifetimes, and significant Stokes' shifts, characteristic of phosphorescence.  相似文献   

18.
The bis(pyridyl)-substituted TTF derivative, 2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene (TTF(py)(2)), and an inorganic analogue, [Ni(4-pedt)(2)] (4-pedt = 1-(pyridin-4-yl)ethylene-1,2-dithiolate), were used as bridging ligands to construct two multinuclear complexes {Co(II)(2)(Tp(Ph2))(2)(OAc)(2)[TTF(py)(2)]} (1, Tp(Ph2) = hydridotri(3,5-diphenylpyrazol-1-yl)borate) and {Co(II)(2)(Tp(Ph2))(2)(OAc)(2)[Ni(4-pedt)(2)]} (2), and two 1D zigzag chain complexes, {[M(II)(tta)(2)][TTF(py)(2)]}(n) (M = Cu for 3, and Mn for 4; tta = thenoyltrifluoroacetonate). X-Ray structural studies indicate that complexes 1 and 2 are very similar as a result of the isolobal analogy between TTF(py)(2) and [Ni(4-pedt)(2)], whereas complexes 3 and 4 are isostructural. The absorption spectra, electrochemical and magnetic properties for these new complexes have been studied. The results show that the interactions between the paramagnetic ions are weak owing to the large separation of the bridging ligands of TTFs and the inorganic analogue.  相似文献   

19.
Four new metal-organic polymeric complexes, {[Cu(mu-OH)(mu-ClPhtrz)][(H 2O)(BF 4)]} n ( 1), {[Cu(mu-OH)(mu-BrPhtrz)][(H 2O)(BF 4)]} n ( 2), {[Cu(mu-OH)(mu-ClPhtrz)(H 2O)](NO 3)} n ( 3), and {[Cu(mu-OH)(mu-BrPhtrz)(H 2O)](NO 3)} n ( 4) (ClPhtrz = N-[( E)-(4-chlorophenyl)methylidene]-4 H-1,2,4-triazol-4-amine; BrPhtrz = N-[( E)-(4-bromophenyl)methylidene]-4 H-1,2,4-triazol-4-amine), were synthesized in a reaction of substituted 1,2,4-triazole and various copper(II) salts in water/acetonitrile solutions. The structures of 1- 4 were characterized by single-crystal X-ray diffraction analysis. The Cu(II) ions are linked both by single N (1), N (2)-1,2,4-triazole and hydroxide bridges yielding one dimensional (1D) linear chain polymers. The tetragonally distorted octahedral geometry of copper atoms is completed alternately by two water and two BF 4 (-) anion molecules in 1 and 2 but solely by two water molecules in 3 and 4. Magnetic properties of all complexes were studied by variable temperature magnetic susceptibility measurements. The Cu(II) ions are strongly antiferromagnetically coupled with J = -419(1) cm (-1) ( 1), -412(2) cm (-1) ( 2), -391(3) cm (-1) ( 3), and -608(2) cm (-1) ( 4) (based on the Hamiltonian H = - J[ summation operator S i . S i+ 1]). The nature and the magnitude of the antiferromagnetic exchange were discussed on the basis of complementarity/countercomplementarity of the two competing bridges.  相似文献   

20.
A sterically hindered aryl phosphonic acid ArP(O)(OH)2 (2) (Ar = 2,4,6-isopropylphenyl) was synthesized and structurally characterized. ArP(O)(OH)2 forms an interesting hydrogen-bonded corrugated sheet-type supramolecular structure in the solid-state. A three-component reaction involving ArP(O)(OH)2, 3,5-dimethylpyrazole(DMPZH), and Cu(CH3COO)2.H2O produces the tetranuclear Cu(II) compound [Cu4(mu3-OH)2{ArPO2(OH)}2(CH3CO2)2(DMPZH)4][CH3COO]2.CH2Cl2 (3). A similar three-component reaction involving ArP(O)(OH)2, 3,5-dimethylpyrazole, and Zn(CH3COO)2.2H2O yields the tetranuclear Zn(II) compound [Zn4{ArPO3}2{ArPO2(OH)}2{DMPZH}4(DMPZ)2].5MeOH (4). While 3 has been found to have an asymmetric cage structure where two dinuclear copper cores are bridged by bidentate [ArPO2(OH)]- ligands, 4 possesses an open-book tricyclic structure composed of three fused metallophosphonate rings. Magnetic studies on 3 revealed antiferromagnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号