首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Au nanoparticles with small sizes (1-4 nm) were effectively formed on Mg-Al mixed oxides (Au/MAO), which showed superior catalytic performances and good recyclability in aerobic homocoupling of phenylboronic acid.  相似文献   

2.
Gold nanoparticles (<2 nm) stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP NPs) were prepared by reduction of AuCl4- with NaBH4 in the presence of PVP and characterized via an array of methods including optical absorption spectroscopy, transmission electron microscopy, X-ray diffraction, X-ray absorption near-edge structure, extended X-ray absorption fine structure, and X-ray photoelectron spectroscopy. We demonstrate for the first time that the Au:PVP NPs act as catalyst toward homocoupling of phenylboronic acid in water under aerobic conditions. Suppression of biphenyl formation under anaerobic conditions indicates that molecular oxygen dissolved in water is intimately involved in the coupling reactions. A mechanism of the aerobic homocoupling catalyzed by the Au:PVP NPs is proposed on the basis of a crucial role of dissolved oxygen, steric effects on the product yields, and the well-established mechanism for the Pd(II)-based catalysts.  相似文献   

3.
Yuan Y  Yan N  Dyson PJ 《Inorganic chemistry》2011,50(21):11069-11074
Gold nanoparticles (NPs) stabilized by carboxylate modified polyvinylpyrrolidone have been prepared and fully characterized. The gold NPs efficiently catalyze the aerobic oxidation of benzyl alcohol in water at ambient temperature and are easily separated from the reaction mixture by lowering the pH of the solution, causing the NPs to precipitate. The mechanism of the precipitation process has been studied. Due to the efficiency of this process, the NPs may be reused as catalysts by readjusting their pH.  相似文献   

4.
5.
Whether gold is catalytically active on its own has been hotly debated since the discovery of gold-based catalysis in the 1980s. One of the central controversies is on the O(2) activation mechanism. This work, by investigating aerobic phenylethanol oxidation on gold nanoparticles in aqueous solution, demonstrates that gold nanoparticles are capable to activate O(2) at the solid-liquid interface. Extensive density functional theory (DFT) calculations combined with the periodic continuum solvation model have been utilized to provide a complete reaction network of aerobic alcohol oxidation. We show that the adsorption of O(2) is very sensitive to the environment: the presence of water can double the O(2) adsorption energy to ~0.4 eV at commonly available edge sites of nanoparticles (~4 nm) because of its strongly polarized nature in adsorption. In alcohol oxidation, the hydroxyl bond of alcohol can break only with the help of an external base at ambient conditions, while the consequent α-C-H bond breaking occurs on pure Au, both on edges and terraces, with a reaction barrier of 0.7 eV, which is the rate-determining step. The surface H from the α-C-H bond cleavage can be easily removed by O(2) and OOH via a H(2)O(2) pathway without involving atomic O. We find that Au particles become negatively charged at the steady state because of a facile proton-shift equilibrium on surface, OOH + OH ? O(2) + H(2)O. The theoretical results are utilized to rationalize experimental findings and provide a firm basis for utilizing nanoparticle gold as aerobic oxidation catalysts in aqueous surroundings.  相似文献   

6.
Stable Au nanoparticles in P123 aqueous solution using a simple method have been developed and the colloidal Au nanoparticles were successfully applied for the effective oxidation of various alcohols using molecular O(2) as oxidant at 30 degrees C in aqueous solution.  相似文献   

7.
Gold nanoparticles supported on nanocrystalline ceria has been found to be more active and chemoselective than palladium and gold(core)-palladium(shell) nanoparticles for the aerobic oxidation of allylic alcohols.  相似文献   

8.
9.
本文报道了一种不使用任何稳定剂或还原剂,原位合成硅胶/聚多巴胺复合物(SiO_2/PDA)负载的Pd纳米颗粒(Pd NPs)的简易方法.该方法先将PDA涂覆的SiO_2颗粒浸在Pd镀液中,然后利用PDA中含N基团的还原能力将Pd物种原位还原为纳米簇合物.并采用高分辨透射电镜、前场扫描电镜、能量散射谱、X射线衍射、X射线光电子能谱、诱导耦合等离子体和红外光谱等手段对所得纳米复合物的结构、形貌和物化性质进行了表征.被PDA基团锚合的Pd NPs具有显著的小颗粒(30–40 nm)特性.作为一个可循环使用的纳米催化剂,SiO_2/PDA/Pd NPs在醇的需氧氧化反应中表现出高活性.另外,催化剂经回收和多次重复使用时未出现明显的失活.  相似文献   

10.
11.
Maria Mifsud 《Tetrahedron》2010,66(5):1040-16910
The previously described catalyst system for the aerobic oxidation of alcohols, comprising palladium(II) acetate in combination with neocuproine in a 1:1 mixture of water and a water-miscible cosolvent such as ethylene carbonate or dimethylsulfoxide, was shown to involve palladium nanoparticles as the active catalyst. The latter are formed in situ or can be preformed by reduction of the palladium-neocuproine complex with hydrogen and they are stabilized by both the neocuproine ligand and the cosolvent. This catalyst system was successfully used for the selective aerobic oxidation of the steroidal secondary alcohols, nandrolone and 5α-pregnan-3α-ol-20-one, to the corresponding ketones.  相似文献   

12.
The aerobic oxidation of alcohols in water can be performed efficiently in the presence of a catalytic amount of the water-soluble diruthenium complex Ru2(micro-OAc)3(micro-CO3) under an atmospheric pressure (1 atm) of O2.  相似文献   

13.
As previously reported for for solventless reactions, gold nanoparticles supported on ceria are also excellent general heterogeneous catalysts for the aerobic oxidations of alcohols in organic solvents. Among organic solvents it was found that toluene is a convenient one. A systematic study on the influence of the particle size and gold content on the support has established that the activity correlates linearly with the total number of external gold atoms, and with the surface coverage of the support. Amongst catalysts with different supports, but similar gold particle size and content, gold on ceria exhibits the highest activity. By means of a kinetic study (influence of sigma+ parameter, kinetic isotopic effect, temperature, alcohol concentration and oxygen pressure) a mechanistic proposal consisting of the formation of metal-alcoholate, beta-hydride shift from carbon to metal and M--H oxidation has been proposed that explains all experimental results.  相似文献   

14.
15.
A novel core-shell structural Fe(3)O(4)@MgAl-LDH@Au nanocatalyst was simply synthesized via supporting Au nanoparticles on the MgAl-LDH surface of Fe(3)O(4)@MgAl-LDH nanospheres. The catalyst exhibited excellent activity for the oxidation of 1-phenylethanol, and can be effectively recovered by using an external magnetic field.  相似文献   

16.
17.
Aerobic oxidation of alcohols in the liquid phase proceeded smoothly in the presence of nanoporous gold catalyst. The catalyst is reusable multiple times without leaching and loss of the catalytic activity. The reaction was applied successfully to a flow system. Adsorptions of O(2) and 1-phenylethanol into the AuNPore were confirmed by TDS analysis.  相似文献   

18.
Gold nanoparticles supported on thiol‐functionalized fructose‐derived nanoporous carbon (AuNPs@thiol‐Fru‐d‐NPS) were found to be a simple bench‐top, biocompatible, recyclable and selective catalytic system for the aerobic oxidation of various types of alcohols into their corresponding aldehydes and ketones at room temperature under the environmentally friendly conditions with excellent yields. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Heterogeneous gold nanocluster catalysts immobilized by the method known as polymer incarceration were prepared. Polystyrene-derived polymers with epoxide and alcohol moieties, which could be cross-linked under heating conditions, were employed as supports for their preparation. Cationic gold salts were reduced in a solution of NaBH4 and the polymers. Poor solvents for the polymers were added, and the polymers were precipitated and encapsulated gold nanoclusters with weak but multiple interactions between a gold nanocluster surface and the π electrons of benzene rings. The polymer capsules were heated under neat conditions to afford heterogeneous gold nanocluster catalysts; namely, polymer-incarcerated gold nanoclusters. The catalysts thus prepared could be applied to the aerobic oxidation of phenyl boronic acids, alcohols, and silyl enol ethers. We found that the choice of polymers, good and poor solvents for the polymers, metal loadings, heating conditions for cross-linking, and final activation were all crucial for obtaining high-activity catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号