首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 998 毫秒
1.
Zinc(II) complexes of alpha-amino acids and their derivatives with a Zn(N2O2) coordination mode were found to have in vitro insulinomimetic activity as estimated with the inhibition of free fatty acid release in isolated rat adipocytes treated with epinephrine. It was revealed that the insulinomimetic activities of zinc(II) complexes with over-all stability constants (log beta) less than 10.5 are higher than those of ZnSO4 and VOSO4. The high blood glucose level of KK-Ay mice with type 2 diabetes mellitus was lowered by daily intraperitoneal injections of a zinc(II) complex, cis-[Zn(L-Thr)2(H2O)2], for 14 d. The improvement of diabetes mellitus was confirmed with the oral glucose tolerance test.  相似文献   

2.
In vitro insulinomimetic activities of Zn(II) complexes with three natural products, betaine, L-lactic acid, and D-(-)-quinic acid (qui), were found in rat adipocytes treated with epinephrine in terms of the inhibition of free fatty acid release. Based on the results, the blood glucose lowering effect in KK-A(y) mice with type 2 diabetes mellitus was observed by daily i.p. injections of a monomeric zinc(II) complex, Zn(qui)(2), for 13 d.  相似文献   

3.
The synthesis and characterization of various triads composed of a linear array of two zinc porphyrins joined via an intervening bis(dipyrrinato)metal(II) complex are reported. The preparation exploits the facile complexation of dipyrrins with divalent metal ions to give bis(dipyrrinato)metal(II) complexes [abbreviated (dp)(2)M]. Copper(II) and palladium(II) chelates of dipyrrins (available by oxidation of dipyrromethanes) were prepared in 50-80% yield. A one-flask synthesis of bis(dipyrrinato)zinc(II) complexes was developed by oxidation of a dipyrromethane with DDQ or p-chloranil in the presence of Zn(OAc)(2).2H(2)O in THF ( approximately 80% yield). Three routes were developed for preparing porphyrin-dipyrrins: (1). Suzuki coupling of a boronate-substituted zinc porphyrin (ZnP) and bis[5-(4-iodophenyl)dipyrrinato]Pd(II) to give the (ZnP-dp)(2)Pd triad (50% yield), followed by selective demetalation of the (dp)(2)Pd unit by treatment with 1,4-dithiothreitol under neutral conditions (71% yield); (2). oxidation of a porphyrin-dipyrromethane with p-chloranil in the presence of Zn(OAc)(2).2H(2)O followed by chromatography on silica gel (71% yield); and (3). condensation of a dipyrrin-dipyrromethane and a dipyrromethane-dicarbinol under InCl(3) catalysis followed by oxidation with DDQ (10-16% yield). Four triads of form (ZnP-dp)(2)Zn were prepared in 83-97% yield by treatment of a porphyrin-dipyrrin with Zn(OAc)(2).2H(2)O at room temperature. Free base dipyrrins typically absorb at 430-440 nm, while the bis(dipyrrinato)metal complexes absorb at 460-490 nm. The fluorescence spectra/yields and excited-state lifetimes of the (ZnP-dp)(2)Zn triad in toluene show (1). efficient energy transfer from the bis(dipyrrinato)zinc(II) chromophore to the zinc porphyrins (98.5% yield), and (2). little or no quenching of the resulting excited zinc porphyrin relative to the isolated chromophore. Taken together, these results indicate that bis(dipyrrinato)zinc(II) complexes can serve as self-assembling linkers that further function as secondary light-collection elements in porphyrin-based light-harvesting arrays.  相似文献   

4.
S-oxygenation of dithiocarbamate (DTC) complexes has been implicated in their function as industrial anti-oxidants, as well as in their use as pesticides and most recently in their cumulative toxicity, but little is known of the species generated. Several S-oxygenated derivatives of N,N-disubstituted DTCs have been synthesized, characterized by a variety of methods, and their structure and reactivity examined. Low-temperature reaction of bis(N,N-diethyldithiocarbamato)zinc(II), Zn(deDTC)2 1, with oxygenating reagents (hydrogen peroxide, m-chloroperbenzoic acid, urea hydrogen peroxide) yields mono-oxygenated DTC complexes (N,N-peroxydiethyldithiocarbamato)(N,N-diethyldithiocarbamato)zin(II), Zn(O-deDTC)(deDTC), 2 and bis(N,N-peroxydiethyldithiocarbamato)zinc(II), Zn(O-deDTC)2, 3. The tetraoxygenated derivative bis(N,N-diethylthiocarbamoylsulfinato)zinc(II), Zn(O(2)-deDTC)2, 4, was cleanly obtained by initial reaction of the DTC salts with stoichiometric oxidant prior to complexation with Zn(II). X-ray crystallographic analysis of 2, 3, and 4 show that the peroxydithiocarbamate ligands are S,O-bound. Similar derivatives were obtained from the homoleptic dimethyl and pyrollidine DTC Zn complexes. These oxygenated species display unique 1H and 13C NMR variable-temperature spectra, as the symmetry of DTC ligand is broken upon oxygenation; total line shape analysis (TLSA) was used to compare the energetic parameters for rotation about the C-N bond in several derivatives. Compounds 2, 3, and 4 were deoxygenated by alkyl phosphine, regenerating the parent dithiocarbamate 1. The peroxydithiocarbamate complexes were susceptible to base-catalyzed hydrolytic decomposition, giving ligand-based products indicative of S-oxidation and S-extrusion.  相似文献   

5.
In recent years, the number of patients suffering from diseases, such as cancer, apoplexy, osteoporosis, hypertension, and type 2 diabetes mellitus is increasing worldwide. Type 2 diabetes, a lifestyle-related disease, is recognized as a serious disease. Various types of pharmaceutics for diabetes have been used. Since the relationship between diabetes and biometals such as vanadium, copper, and zinc ions has been recognized for many years, we have been developing the anti-diabetic metal complexes as new candidates. We found that several zinc(II) (Zn) complexes exhibit glucose-lowering activity for treating type 2 diabetes. High doses of salicylates have been known to reverse hyperglycemia and hyperinsulinemia in type 2 diabetic patients. These findings strongly suggest that the combined use of Zn and salicylates achieves the synergism in treating type 2 diabetes. Because aspirin, acetyl salicylic acid, has a chelating ability, we used it as a ligand to Zn. Several Zn-salicylate complexes were prepared and their biological activities were examined in this study. The complexes with an electron-withdrawing group in the ligand exhibited higher in vitro insulinomimetic activity than those of Zn complexes with an electron-donating group in the ligand. When bis(aspirinato)Zn (Zn(asp)?) complex was orally administered on KK-A(y) mice with hereditary type 2 diabetes, the diabetic state was improved. In addition, this complex exhibited normalizing effects on serum adiponectin level and high blood pressure in metabolic syndrome. In conclusion, Zn(asp)? complex is newly proposed as a potent anti-diabetic and anti-metabolic syndrome agent.  相似文献   

6.
Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene (m-[CH(pz)2]2C6H4, Lm) and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with BF4- salts of divalent iron, zinc, and cadmium result in fluoride abstraction from BF4- and formation of fluoride-bridged metallacyclic complexes. Treatment of Fe(BF4)2.6H2O and Zn(BF4)2.5H2O with Lm leads to the complexes [Fe2(mu-F)(mu-Lm)2](BF4)3 (1) and [Zn2(mu-F)(mu-Lm)2](BF4)3 (2), in which a single fluoride ligand and two Lm molecules bridge the two metal centers. The reaction of [Cd2(thf)5](BF4)4 with Lm results in the complex [Cd2(mu-F)2(mu-Lm)2](BF4)2 (3), which contains dimeric cations in which two fluoride and two Lm ligands bridge the cadmium centers. Equimolar amounts of the tritopic ligand L3 and Zn(BF4)2.5H2O react to give the related monofluoride-bridged complex [Zn2(mu-F)(mu-L3)2](BF4)3 (4), in which one bis(pyrazolyl)methane unit on each ligand remains unbound. NMR spectroscopic studies show that in acetonitrile the zinc metallacycles observed in the solid-state remain intact in solution.  相似文献   

7.
A novel bis(L-carnitinato)Zn(II) complex, Zn(car)(2)Cl(2), was prepared, and its insulinomimetic and antidiabetic activities were examined. The complex showed a tendency to lower the high blood glucose levels of KK-A(y) mice with type 2 diabetes mellitus when given by oral administration at a dose of 20 mg Zn/kg body weight for 16 d. In addition, the complex improved glucose tolerance ability when examined by the oral glucose tolerance test (1 g glucose/kg body weight).  相似文献   

8.
《Vibrational Spectroscopy》2007,43(2):297-305
The new zinc(II) coordination polymer catena-poly[{aqua(η2-indole-3-carboxylato-O,O′)zinc}-μ-indole-3-carboxylato-O:O′], [Zn(I3CA)2(H2O)]n [Zn(I3CA)2(H2O)]n has been synthesized and characterized using infrared and Raman spectroscopy and X-ray single-crystal diffraction analysis. The crystals are monoclinic, space group Cc, with a = 33.319(7), b = 5.985(1), c = 8.291(2) Å, V = 1653.1(6) Å3 and z = 4. Each zinc centre is five-coordinated by the bidentate chelating indole-3-carboxylato, one oxygen atom bridging indole-3-carboxylato, water molecule and one oxygen atom bridging indole-3-carboxylato from an adjacent [Zn(I3CA)2(H2O)] unit. The Zn–O distances of 1.978(4), 1.987(3), 1.977(4), 1.983(3) and 2.519(4) Å, are typical for distances of such complexes. The infrared and Raman spectroscopic data of [Zn(I3CA)2(H2O)]n in the solid state are supported by X-ray analysis. The theoretical wavenumbers, infrared intensities and Raman scattering activities have been calculated by the density functional methods (B3LYP and mPW1PW) with the D95V**/LanL2DZ and 6-311++G(d,p)/LanL2DZ basis sets. The theoretical wavenumbers, infrared intensities and Raman scattering activities show a good agreement with experimental. Detailed band assignment has been made on the basis of the calculated potential energy distribution (PED). The results provide information on the strength of zinc-ligand bonding in complex.  相似文献   

9.
The zinc(II), copper(II), nickel(II), and cobalt(II) complexes of Schiff bases, obtained by the condensation of cefixime with furyl-2-carboxaldehyde, thiophene-2-carboxaldehyde, salicylaldehyde, pyrrol-2-carboxaldehyde, and 3-hydroxynaphthalene-2-carboxaldehyde, were synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, IR, and electronic spectral measurements. Analytical data and electrical conductivity measurements indicated the formation of M?:?L (1?:?2) complexes, [M(L)2(H2O)2] or [M(L)2(H2O)2]Cl2 [where M?=?Zn(II), Cu(II), Ni(II), and Co(II)] in which ligands are bidentate via azomethine-N and deprotonated-O of salicyl and naphthyl, furanyl-O, thienyl-S, and deprotonated pyrrolyl-N. The magnetic moments and electronic spectral data suggest octahedral complexes. The synthesized ligands, along with their metal complexes, were screened for their antibacterial activity against different bacterial strains. The studies show the metal complexes to be more active against one or more species as compared to the uncomplexed ligands.  相似文献   

10.
A general, direct, and high-yield synthesis of bis(salicylaldimine) zinc complexes from the ligands and Et(2)Zn is reported. This synthetic method is particularly valuable, not only because it allows the efficient preparation of salen-type complexes of zinc but also because it can be used to prepare bifunctional pyridine-modified zinc(II) bis(salicylidene) complexes, which are potentially useful compounds for applications in asymmetric catalysis and materials chemistry. The synthesis and complete structural characterization of a new series of pyridine-modified zinc(II) bis(salicylidene) ligands is discussed.  相似文献   

11.
Zn(II) complexes are expected to be useful in the treatment of diabetes mellitus because of the hypoglycemic effect produced by its insulin-mimetic activity. Previous reports indicated that Zn(II) complexes with coordinating sulfur exhibit higher insulin-mimetic activity. In this study, we investigated the pharmacological and pharmacokinetic differences between Zn(O(4)) and Zn(S(2)O(2)) coordination modes of tropolonato-Zn(II) complexes with insulin-mimetic activity. Among the tropolonato-Zn(II) complexes with various coordination modes, di(2-mercaptotropolonato)zinc(II) (ZT2) with the Zn(S(2)O(2)) coordination mode was found to exhibit the highest in vitro insulin-mimetic activity with respect to inhibition of free fatty acid (FFA) release and enhancement of glucose uptake in isolated rat adipocytes treated with adrenaline. On comparing investigations of the antidiabetic effect in vivo, ZT2 was found to exhibit potent hypoglycemic activity and improve insulin resistance in type 2 diabetic KKA(y) mice at a low orally administered daily dose. Di(tropolonato)zinc(II) (ZT1), which has the Zn(O(4)) coordination mode, had a lesser effect at the same dose. In a pharmacokinetic analysis based on the (65)Zn tracer method, ZT2 was found to be absorbed at a significantly slower rate with a longer half-life than was ZT1. These results suggest that the potent hypoglycemic activity of ZT2 might be attributed to its long half-life.  相似文献   

12.
Singly and doubly charged atomic ions of zinc and copper have been complexed with pyridine and held in an ion trap. Complexes involving Zn(II) and Cu(I) (3d(10)) display a strong tendency to bind with H(2)O, whilst the Zn(I) (3d(10)4s(1)) complexes exhibit a strong preference for the attachment of O(2). DFT calculations show that this latter result can be interpreted as internal oxidation leading to the formation of superoxide complexes, [Zn(II)O(2)(-)](pyridine)(n), in the gas phase. The calculations also show that the oxidation of Zn(I) to form Zn(II)O(2)(-) is promoted by a mixing of the occupied 4s and vacant 4p orbitals on the metal cation, and that this process is facilitated by the presence of the pyridine ligands.  相似文献   

13.
We have studied the ligand behavior of racemic isovalinate (iva) and valinate (val) towards zinc(II) and calcium(II). The following solid metal amino acidates were obtained from aqueous solutions: Zn3Cl2(iva)4 (1), Zn3Cl2(val)4 (2). Zn(val)2 (3), Zn(iva)2 x 2H2O (4), Zn(iva)2 x 3.25H2O (5), Zn(iva)2 (6), Ca(iva)2x xH2O (7), and Ca(val)2 x H2O (8). Except for complex 3, these were hitherto unknown compounds. The conditions under which they formed, together with current ideas of the conditions on early Earth, support the assumption that alpha-amino acidate complexes of zinc and calcium might have belonged to early Earth's prebiotic chemical inventory. The zinc isovalinates 1, 4, and 5 were characterized by X-ray crystal structure analyses. Complex 1 forms a layer structure containing four- and five-coordinate metal atoms, whereas the zinc atoms in 4 and 5 are five-coordinate. Compound 5 possesses an unprecedented nonpolymeric structure built from cyclic [Zn6(iva)12] complexes, which are separated by water molecules. The thermolyses of solids 1. 3, and 8 at 320 degrees C in an N2 atmosphere yielded numerous organic products, including the cyclic dipeptide of valine from 3 and 8. Condensation, C-C bond breaking and bond formation, aromatization, decarboxylation, and deamination reactions occurred during the thermolyses. Such reactions of metal-bound a-amino acidates that are abiotically formed could already have contributed to an organic-geochemical diversity before life appeared on Earth.  相似文献   

14.
15.
Analogues of the ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-ylmethyl)azanediyl)diethanol (CH(3)H(3)L1) are described. Complexation of these analogues, 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (CH(3)HL2), 4-bromo-2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (BrHL2), 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (NO(2)HL2) and 4-methyl-2,6-bis(((2-phenoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (CH(3)HL3) with zinc(II) acetate afforded [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(BrL2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(CH(3)L3)(CH(3)COO)(2)](PF(6)), in addition to [Zn(4)(CH(3)L2)(2)(NO(2)C(6)H(5)OPO(3))(2)(H(2)O)(2)](PF(6))(2) and [Zn(4)(BrL2)(2)(PO(3)F)(2)(H(2)O)(2)](PF(6))(2). The complexes were characterized using (1)H and (13)C NMR spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. The complexes contain either a coordinated methyl- (L2 ligands) or phenyl- (L3 ligand) ether, replacing the potentially nucleophilic coordinated alcohol in the previously reported complex [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)). Functional studies of the zinc complexes with the substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) showed them to be competent catalysts with, for example, [Zn(2)(CH(3)L2)](+), k(cat) = 5.70 ± 0.04 × 10(-3) s(-1) (K(m) = 20.8 ± 5.0 mM) and [Zn(2)(CH(3)L3)](+), k(cat) = 3.60 ± 0.04 × 10(-3) s(-1) (K(m) = 18.9 ± 3.5 mM). Catalytically relevant pK(a)s of 6.7 and 7.7 were observed for the zinc(II) complexes of CH(3)L2(-) and CH(3)L3(-), respectively. Electron donating para-substituents enhance the rate of hydrolysis of BDNPP such that k(cat)p-CH(3) > p-Br > p-NO(2). Use of a solvent mixture containing H(2)O(18)/H(2)O(16) in the reaction with BDNPP showed that for [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), as well as [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)), the (18)O label was incorporated in the product of the hydrolysis suggesting that the nucleophile involved in the hydrolysis reaction was a Zn-OH moiety. The results are discussed with respect to the potential nucleophilic species (coordinated deprotonated alcohol versus coordinated hydroxide).  相似文献   

16.
The reactivity of a series of Zn(Cys)(4) zinc finger model peptides towards H(2)O(2) and O(2) has been investigated. The oxidation products were identified by HPLC and ESI-MS analysis. At pH<7.5, the zinc complexes and the free peptides are oxidised to bis-disulfide-containing peptides. Above pH 7.5, the oxidation of the zinc complexes by H(2)O(2) also yields sulfinate- and sulfonate-containing overoxidised peptides. At pH 7.0, monitoring of the reactions between the zinc complexes and H(2)O(2) by HPLC revealed the sequential formation of two disulfides. Several techniques for the determination of the rate constant for the first oxidation step corresponding to the attack of H(2)O(2) by the Zn(Cys)(4) site have been compared. This rate constant can be reliably determined by monitoring the oxidation by HPLC, fluorescence, circular dichroism or absorption spectroscopy in the presence of excess ethyleneglycol bis(2-aminoethyl ether)tetraacetic acid. In contrast, monitoring of the release of zinc with 4-(2-pyridylazo)resorcinol or of the thiol content with 5,5'-dithiobis(2-nitrobenzoate) did not yield reliable values of this rate constant for the case in which the formation of the second disulfide is slower than the formation of the first. The kinetic measurements clearly evidence a protective effect of zinc on the oxidation of the cysteines by both H(2)O(2) and O(2), which points to the fact that zinc binding diminishes the nucleophilicity of the thiolates. In addition, the reaction between the zinc finger and H(2)O(2) is too slow to consider zinc fingers as potential sensors for H(2)O(2) in cells.  相似文献   

17.
Dinuclear zinc(II) complexes [Zn(2)(bpmp)(mu-OH)](ClO(4))(2) (1) and [Zn(2)(bpmp)(H(2)O)(2)](ClO(4))(3) (2) (H-BPMP=2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) have been synthesized, structurally characterized, and pH-driven changes in metal coordination observed. The transesterification reaction of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) in the presence of the two complexes was studied both in a water/DMSO (70:30) mixture and in DMSO. Complex 2 was not reactive whereas for 1 considerable rate enhancement of the spontaneous hydrolysis reaction was observed. A detailed mechanistic investigation by kinetic studies, spectroscopic measurements ((1)H, (31)P NMR spectroscopy), and ESI-MS analysis in conjunction with ab initio calculations was performed on 1. Based on these results, two medium-dependent mechanisms are presented and an unusual bridging phosphate intermediate is proposed for the process in DMSO.  相似文献   

18.
The work in the present investigation reports the syntheses, structures, steady state, and time-resolved photophysical properties of a tetraiminodiphenol macrocyclic ligand H(2)L and its eight dinuclear zinc(II) complexes and one cadmium(II) complex having composition [Zn(2)L(H(2)O)(2)](ClO(4))(2)·2CH(3)CN (1), [Zn(2)L(H(2)O)(2)](ClO(4))(2)·2dmf (2), [Zn(2)L(H(2)O)(2)](NO(3))(2)·2dmf (3), [Zn(2)LCl(2)] (4), [Zn(2)L(N(3))(2)] (5), [Zn(2)L(NCS)(2)] (6), [Zn(2)L(NCO)(2)] (7), [Zn(2)L(NCSe)(2)](2)·dmf (8), and [Cd(2)L(OAc)(2)] (9) with various coordinating and noncoordinating anions. The structures of all the complexes 1-9 have been determined by single-crystal X-ray diffraction. The noncovalent interactions in the complexes result in the generation of the following topologies: two-dimensional network in 1, 2, 4, 6, 7, 8, and 9; three-dimensional network in 5. Spectrophotometric and spectrofluorometric titrations of the diprotonated salt [H(4)L](ClO(4))(2) with triethylamine as well as with zinc(II) acetate and cadmium(II) acetate have been carried out, revealing fluorescence enhancement of the macrocyclic system by the base and the metal ions. Steady state fluorescence properties of [H(4)L](ClO(4))(2) and 1-9 have been studied and their quantum yields have been determined. Time resolved fluorescence behavior of [H(4)L](ClO(4))(2) and the dizinc(II) and dicadmium(II) complexes 1-9 have also been studied, and their lifetimes and radiative and nonradiative rate constants have been determined. The induced fluorescence enhancement of the macrocycle by zinc(II) and cadmium(II) is in line with the greater rate of increase of the radiative rate constants in comparison to the smaller rate of increase of nonradiative rate constants for the metal complexes. The fluorescence decay profiles of all the systems, being investigated here, that is, [H(4)L](ClO(4))(2) and 1-9, follow triexponential patterns, revealing that at least three conformers/components are responsible to exhibit the fluorescence decay behavior. The systems and studies in this report have been compared with those in the reports of the previously published similar systems, revealing some interesting aspects.  相似文献   

19.
A family of thirteen tetranuclear heterometallic zinc(II)-lanthanide(III) complexes of the hexa-imine macrocycle (L(Pr))(6-), with general formula Zn(II)(3)Ln(III)(L(Pr))(NO(3))(3)·xsolvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm or Yb), were prepared in a one-pot synthesis using a 3:1:3:3 reaction of zinc(II) acetate, the appropriate lanthanide(III) nitrate, the dialdehyde 1,4-diformyl-2,3-dihydroxybenzene (H(2)L(1)) and 1,3-diaminopropane. A hexanuclear homometallic zinc(II) macrocyclic complex [Zn(6)(L(Pr))(OAc)(5)(OH)(H(2)O)]·3H(2)O was obtained using a 2:0:1:1 ratio of the same reagents. A control experiment using a 1:0:1:1 ratio failed to generate the lanthanide-free [Zn(3)(L(Pr))] macrocyclic complex. The reaction of H(2)L(1) and zinc(II) acetate in a 1:1 ratio yielded the pentanuclear homometallic complex of the dialdehyde H(2)L(1), [Zn(5)(L(1))(5)(H(2)O)(6)]·3H(2)O. An X-ray crystal structure determination revealed [Zn(3)(II)Pr(III)(L(Pr))(NO(3))(2)(DMF)(3)](NO(3))·0.9DMF has the large ten-coordinate lanthanide(III) ion bound in the central O(6) site with two bidentate nitrate anions completing the O(10) coordination sphere. The three square pyramidal zinc(II) ions are in the outer N(2)O(2) sites with a fifth donor from DMF. Measurement of the magnetic properties of [Zn(II)(3)Dy(III)(L(Pr))(NO(3))(3)(MeOH)(3)]·4H(2)O with a weak external dc field showed that it has a frequency-dependent out-of-phase component of ac susceptibility, indicative of slow relaxation of the magnetization (SMM behaviour). Likewise, the Er and Yb analogues are field-induced SMMs; the latter is only the second example of a Yb-based SMM. The neodymium, ytterbium and erbium complexes are luminescent in the solid phase, but only the ytterbium and neodymium complexes show strong lanthanide-centred luminescence in DMF solution.  相似文献   

20.
Four Zn(II) complexes, [Zn L 2(SO4)]n ( 1 ), [Zn L 4(H2O)2]?2(NO3)?4EtOH ( 2 ), [Zn L 2Cl2]? L ( 3 ), and [Zn L 2Br2]? L ( 4 ) ( L  = uniconazole), were synthesized using a hydrothermal method and characterized by elemental analysis, FT‐IR spectroscopy, and single‐crystal XRD. Complex 1 formed a one‐dimensional polymer chain. However, complexes 2 ‐ 4 were obtained as zero‐dimensional mononuclear coordination compounds. The antifungal activities of these complexes were then evaluated against four selected fungi using the mycelial growth rate method. The resulting data indicate that all complexes show better antifungal activities than their ligands and mixtures. In addition, the interactions between the metal salts of complexes 1 ‐ 4 and uniconazole seem to be synergistic. Furthermore, the polymer chain structure of complex 1 significantly enhanced the bioactivity, especially against Botryosphaeria ribis ( I ). Density functional theory (DFT) calculations were carried out to help explain the enhanced bioactivity after the formation of Zn(II) complexes. The resulting data show that the HOMO–LUMO energy gaps of complexes 1 ‐ 4 (0.0578, 0.0946, 0.1053, and 0.1245 eV) are smaller than that of the free ligand (0.1247 eV) and correlate with the antifungal activity of the zinc complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号