首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a bounded domain and , assume that is convex and coercive, and that has no interior points. Then we establish the uniqueness of viscosity solutions to the Dirichlet problem of Aronsson’s equation:
For H = H(p, x) depending on x, we illustrate the connection between the uniqueness and nonuniqueness of viscosity solutions to Aronsson’s equation and that of the Hamilton–Jacobi equation . Supported by NSF DMS 0601162. Supported by NSF DMS 0601403.  相似文献   

2.
Crack Initiation in Brittle Materials   总被引:1,自引:0,他引:1  
In this paper we study the crack initiation in a hyper-elastic body governed by a Griffith-type energy. We prove that, during a load process through a time-dependent boundary datum of the type tt g(x) and in the absence of strong singularities (e.g., this is the case of homogeneous isotropic materials) the crack initiation is brutal, that is, a big crack appears after a positive time t i > 0. Conversely, in the presence of a point x of strong singularity, a crack will depart from x at the initial time of loading and with zero velocity. We prove these facts for admissible cracks belonging to the large class of closed one-dimensional sets with a finite number of connected components. The main tool we employ to address the problem is a local minimality result for the functional where , k > 0 and f is a suitable Carathéodory function. We prove that if the uncracked configuration u of Ω relative to a boundary displacement ψ has at most uniformly weak singularities, then configurations (uΓ, Γ) with small enough are such that .  相似文献   

3.
We study the limit of the hyperbolic–parabolic approximation
The function is defined in such a way as to guarantee that the initial boundary value problem is well posed even if is not invertible. The data and are constant. When is invertible, the previous problem takes the simpler form
Again, the data and are constant. The conservative case is included in the previous formulations. Convergence of the , smallness of the total variation and other technical hypotheses are assumed, and a complete characterization of the limit is provided. The most interesting points are the following: First, the boundary characteristic case is considered, that is, one eigenvalue of can be 0. Second, as pointed out before, we take into account the possibility that is not invertible. To deal with this case, we take as hypotheses conditions that were introduced by Kawashima and Shizuta relying on physically meaningful examples. We also introduce a new condition of block linear degeneracy. We prove that, if this condition is not satisfied, then pathological behaviors may occur.  相似文献   

4.
5.
We consider the Cauchy problem for a strictly hyperbolic, N × N quasilinear system in one-space dimension
where , is a smooth matrix-valued map and the initial data is assumed to have small total variation. We present a front tracking algorithm that generates piecewise constant approximate solutions converging in to the vanishing viscosity solution of (1), which, by the results in [6], is the unique limit of solutions to the (artificial) viscous parabolic approximation
as . In the conservative case where A(u) is the Jacobian matrix of some flux function F(u) with values in , the limit of front tracking approximations provides a weak solution of the system of conservation laws u t + F(u) x = 0, satisfying the Liu admissibility conditions. These results are achieved under the only assumption of strict hyperbolicity of the matrices A(u), . In particular, our construction applies to general, strictly hyperbolic systems of conservation laws with characteristic fields that do not satisfy the standard conditions of genuine nonlinearity or of linear degeneracy in the sense of Lax[17], or in the generalized sense of Liu[23]. Dedicated to Prof. Tai Ping Liu on the occasion of his 60 th birthday  相似文献   

6.
We consider the Allen–Cahn equation in a bounded, smooth domain Ω in , under zero Neumann boundary conditions, where is a small parameter. Let Γ0 be a segment contained in Ω, connecting orthogonally the boundary. Under certain nondegeneracy and nonminimality assumptions for Γ0, satisfied for instance by the short axis in an ellipse, we construct, for any given N ≥ 1, a solution exhibiting N transition layers whose mutual distances are and which collapse onto Γ0 as . Asymptotic location of these interfaces is governed by a Toda-type system and yields in the limit broken lines with an angle at a common height and at main order cutting orthogonally the boundary.  相似文献   

7.
In this paper we study linear reaction–hyperbolic systems of the form , (i = 1, 2, ..., n) for x > 0, t > 0 coupled to a diffusion equation for p 0 = p 0(x, y, θ, t) with “near-equilibrium” initial and boundary data. This problem arises in a model of transport of neurofilaments in axons. The matrix (k ij ) is assumed to have a unique null vector with positive components summed to 1 and the v j are arbitrary velocities such that . We prove that as the solution converges to a traveling wave with velocity v and a spreading front, and that the convergence rate in the uniform norm is , for any small positive α.  相似文献   

8.
Strong Traces for Solutions to Scalar Conservation Laws with General Flux   总被引:1,自引:0,他引:1  
In this paper we consider bounded weak solutions u of scalar conservation laws, not necessarily of class BV, defined in a subset . We define a strong notion of trace at the boundary of reached by L 1 convergence for a large class of functionals of u, G(u). The functionals G depend on the flux function of the conservation law and on the boundary of . The result holds for a general flux function and a general subset.  相似文献   

9.
We study the dynamics and regularity of level sets in solutions of the semilinear parabolic equation
where is a ring-shaped domain, a and μ are given positive constants, is the Heaviside maximal monotone graph: if s > 0, if s < 0. Such equations arise in climatology (the so-called Budyko energy balance model), as well as in other contexts such as combustion. We show that under certain conditions on the initial data the level sets are n-dimensional hypersurfaces in the (x, t)-space and show that the dynamics of Γ μ is governed by a differential equation which generalizes the classical Darcy law in filtration theory. This differential equation expresses the velocity of advancement of the level surface Γ μ through spatial derivatives of the solution u. Our approach is based on the introduction of a local set of Lagrangian coordinates: the equation is formally considered as the mass balance law in the motion of a fluid and the passage to Lagrangian coordinates allows us to watch the trajectory of each of the fluid particles.  相似文献   

10.
We consider the nonlinear elliptic system
where and is the unit ball. We show that, for every and , the above problem admits a radially symmetric solution (u β , v β ) such that u β v β changes sign precisely k times in the radial variable. Furthermore, as , after passing to a subsequence, u β w + and v β w uniformly in , where w = w +w has precisely k nodal domains and is a radially symmetric solution of the scalar equation Δww + w 3 = 0 in , w = 0 on . Within a Hartree–Fock approximation, the result provides a theoretical indication of phase separation into many nodal domains for Bose–Einstein double condensates with strong repulsion.  相似文献   

11.
12.
The fundamental theorem of surface theory classically asserts that, if a field of positive-definite symmetric matrices (a αβ ) of order two and a field of symmetric matrices (b αβ ) of order two together satisfy the Gauss and Codazzi-Mainardi equations in a simply connected open subset ω of , then there exists an immersion such that these fields are the first and second fundamental forms of the surface , and this surface is unique up to proper isometries in . The main purpose of this paper is to identify new compatibility conditions, expressed again in terms of the functions a αβ and b αβ , that likewise lead to a similar existence and uniqueness theorem. These conditions take the form of the matrix equation
where A 1 and A 2 are antisymmetric matrix fields of order three that are functions of the fields (a αβ ) and (b αβ ), the field (a αβ ) appearing in particular through the square root U of the matrix field The main novelty in the proof of existence then lies in an explicit use of the rotation field R that appears in the polar factorization of the restriction to the unknown surface of the gradient of the canonical three-dimensional extension of the unknown immersion . In this sense, the present approach is more “geometrical” than the classical one. As in the recent extension of the fundamental theorem of surface theory set out by S. Mardare [20–22], the unknown immersion is found in the present approach to exist in function spaces “with little regularity”, such as , p > 2. This work also constitutes a first step towards the mathematical justification of models for nonlinearly elastic shells where rotation fields are introduced as bona fide unknowns.  相似文献   

13.
We study the dynamics of vortices in solutions of the Gross–Pitaevsky equation in a bounded, simply connected domain with natural boundary conditions on ∂Ω. Previous rigorous results have shown that for sequences of solutions with suitable well-prepared initial data, one can determine limiting vortex trajectories, and moreover that these trajectories satisfy the classical ODE for point vortices in an ideal incompressible fluid. We prove that the same motion law holds for a small, but fixed , and we give estimates of the rate of convergence and the time interval for which the result remains valid. The refined Jacobian estimates mentioned in the title relate the Jacobian J(u) of an arbitrary function to its Ginzburg–Landau energy. In the analysis of the Gross–Pitaevsky equation, they allow us to use the Jacobian to locate vortices with great precision, and they also provide a sort of dynamic stability of the set of multi-vortex configurations.  相似文献   

14.
We prove time local existence and uniqueness of solutions to a boundary layer problem in a rotating frame around the stationary solution called the Ekman spiral. We choose initial data in the vector-valued homogeneous Besov space for 2 <  p <  ∞. Here the L p -integrability is imposed in the normal direction, while we may have no decay in tangential components, since the Besov space contains nondecaying functions such as almost periodic functions. A crucial ingredient is theory for vector-valued homogeneous Besov spaces. For instance we provide and apply an operator-valued bounded H -calculus for the Laplacian in for a general Banach space .  相似文献   

15.
Let be the set of m × m matrices A(λ) depending analytically on a parameter λ in a closed interval . Consider one-parameter families of quasi-periodic linear differential equations: , where is analytic and sufficiently small. We prove that there is an open and dense set in , such that for each the equation can be reduced to an equation with constant coefficients by a quasi-periodic linear transformation for almost all in Lebesgue measure sense provided that g is sufficiently small. The result gives an affirmative answer to a conjecture of Eliasson (In: Proceeding of Symposia in Pure Mathematics). Dedicated to Professor Zhifen Zhang on the occasion of her 80th birthday  相似文献   

16.
We consider the Navier–Stokes equations in the thin 3D domain , where is a two-dimensional torus. The equation is perturbed by a non-degenerate random kick force. We establish that, firstly, when ε ≪ 1, the equation has a unique stationary measure and, secondly, after averaging in the thin direction this measure converges (as ε → 0) to a unique stationary measure for the Navier–Stokes equation on . Thus, the 2D Navier–Stokes equations on surfaces describe asymptotic in time, and limiting in ε, statistical properties of 3D solutions in thin 3D domains.  相似文献   

17.
We obtain attractor and inertial-manifold results for a class of 3D turbulent flow models on a periodic spatial domain in which hyperviscous terms are added spectrally to the standard incompressible Navier–Stokes equations (NSE). Let P m be the projection onto the first m eigenspaces of A =−Δ, let μ and α be positive constants with α ≥3/2, and let Q m =IP m , then we add to the NSE operators μ A φ in a general family such that A φQ m A α in the sense of quadratic forms. The models are motivated by characteristics of spectral eddy-viscosity (SEV) and spectral vanishing viscosity (SVV) models. A distinguished class of our models adds extra hyperviscosity terms only to high wavenumbers past a cutoff λ m0 where m 0m, so that for large enough m 0 the inertial-range wavenumbers see only standard NSE viscosity. We first obtain estimates on the Hausdorff and fractal dimensions of the attractor (respectively and ). For a constant K α on the order of unity we show if μ ≥ ν that and if μ ≤ ν that where ν is the standard viscosity coefficient, l 0 = λ1−1/2 represents characteristic macroscopic length, and is the Kolmogorov length scale, i.e. where is Kolmogorov’s mean rate of dissipation of energy in turbulent flow. All bracketed constants and K α are dimensionless and scale-invariant. The estimate grows in m due to the term λ m 1 but at a rate lower than m 3/5, and the estimate grows in μ as the relative size of ν to μ. The exponent on is significantly less than the Landau–Lifschitz predicted value of 3. If we impose the condition , the estimates become for μ ≥ ν and for μ ≤ ν. This result holds independently of α, with K α and c α independent of m. In an SVV example μ ≥ ν, and for μ ≤ ν aspects of SEV theory and observation suggest setting for 1/c within α orders of magnitude of unity, giving the estimate where c α is within an order of magnitude of unity. These choices give straight-up or nearly straight-up agreement with the Landau–Lifschitz predictions for the number of degrees of freedom in 3D turbulent flow with m so large that (e.g. in the distinguished-class case for m 0 large enough) we would expect our solutions to be very good if not virtually indistinguishable approximants to standard NSE solutions. We would expect lower choices of λ m (e.g. with a > 1) to still give good NSE approximation with lower powers on l 0/l ε, showing the potential of the model to reduce the number of degrees of freedom needed in practical simulations. For the choice , motivated by the Chapman–Enskog expansion in the case m = 0, the condition becomes , giving agreement with Landau–Lifschitz for smaller values of λ m then as above but still large enough to suggest good NSE approximation. Our final results establish the existence of a inertial manifold for reasonably wide classes of the above models using the Foias/Sell/Temam theory. The first of these results obtains such an of dimension N > m for the general class of operators A φ if α > 5/2. The special class of A φ such that P m A φ = 0 and Q m A φQ m A α has a unique spectral-gap property which we can use whenever α ≥ 3/2 to show that we have an inertial manifold of dimension m if m is large enough. As a corollary, for most of the cases of the operators A φ in the distinguished-class case that we expect will be typically used in practice we also obtain an , now of dimension m 0 for m 0 large enough, though under conditions requiring generally larger m 0 than the m in the special class. In both cases, for large enough m (respectively m 0), we have an inertial manifold for a system in which the inertial range essentially behaves according to standard NSE physics, and in particular trajectories on are controlled by essentially NSE dynamics.   相似文献   

18.
We study the evolution of a system of n particles in . That system is a conservative system with a Hamiltonian of the form , where W 2 is the Wasserstein distance and μ is a discrete measure concentrated on the set . Typically, μ(0) is a discrete measure approximating an initial L density and can be chosen randomly. When d  =  1, our results prove convergence of the discrete system to a variant of the semigeostrophic equations. We obtain that the limiting densities are absolutely continuous with respect to the Lebesgue measure. When converges to a measure concentrated on a special d–dimensional set, we obtain the Vlasov–Monge–Ampère (VMA) system. When, d = 1 the VMA system coincides with the standard Vlasov–Poisson system.  相似文献   

19.
Let be a body moving by prescribed rigid motion in a Navier–Stokes liquid that fills the whole space and is subject to given boundary conditions and body force. Under the assumptions that, with respect to a frame , attached to , these data are time independent, and that their magnitude is not “too large”, we show the existence of one and only one corresponding steady motion of , with respect to , such that the velocity field, at the generic point x in space, decays like |x|−1. These solutions are “physically reasonable” in the sense of FINN [10]. In particular, they are unique and satisfy the energy equation. Among other things, this result is relevant in engineering applications involving orientation of particles in viscous liquid [14].  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号