首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We show, numerically, that the integral equation for the axial gauge gluon propagator developed in the preceding paper has an explicit solution with the features outlined there. This solution is expected to be exact in the infrared limit. We find, however, that even in the ultraviolet limit it does not differ greatly from the known asymptotic freedom behavior of the propagator. It may, therefore, be a reasonable approximation over the whole range.  相似文献   

2.
In a pure Yang-Mills theory, the Dyson equation for the gluon propagator is studied in the infrared regime, under the assumption that, as in QED, only those parts of the proper gluon vertex functions determined by the Ward identities are relevant. The calculations are all carried out in the axial gauge. With a number of simplifying assumptions the resulting integral equation for the gluon propagator can be solved in the IR regime. The solution displays a power singularity in the IR for the renormalized coupling constant g(q2).  相似文献   

3.
We report on the infrared limit of the quenched lattice Landau gauge gluon and ghost propagators as well as the strong-coupling constant computed from large asymmetric lattices. The infrared lattice propagators are compared with the pure power law solutions from Dyson-Schwinger equations (DSE). For the gluon propagator, the lattice data is compatible with the DSE solution. The preferred measured gluon exponent being ∼0.52, favouring a vanishing propagator at zero momentum. The lattice ghost propagator shows finite-volume effects and, for the volumes considered, the propagator does not follow a pure power law. Furthermore, the strong-coupling constant is computed and its infrared behaviour investigated.  相似文献   

4.
The compatibility of the pure power law infrared solution of QCD and lattice data for the gluon and ghost propagators in Landau gauge is discussed. For the gluon propagator, the lattice data are well described by a pure power law with an infrared exponent κ∼0.53, in the Dyson–Schwinger notation. κ is measured using a technique that suppresses finite volume effects. This value is consistent with a vanishing zero momentum gluon propagator, in agreement with the Gribov–Zwanziger confinement scenario. For the ghost propagator, the lattice data seem not to follow a pure power law, at least for the range of momenta accessed in our simulation.  相似文献   

5.
Expanding the Landau gauge gluon and ghost two-point functions in a power series we investigate their infrared behavior. The corresponding powers are constrained through the ghost Dyson-Schwinger equation by exploiting multiplicative renormalizability. Without recourse to any specific truncation we demonstrate that the infrared powers of the gluon and ghost propagators are uniquely related to each other. Constraints for these powers are derived, and the resulting infrared enhancement of the ghost propagator signals that the Kugo-Ojima confinement criterion is fulfilled in Landau gauge Yang-Mills theory.  相似文献   

6.
The general scale parameter, having the dimensions of mass squared, is dynamically generated in the QCD gluon sector. It is introduced through the difference between the regularized full gluon self-energy and its value at some finite point. It violates transversality of the full gluon self-energy. The Slavnov-Taylor identity for the full gluon propagator, when it is given by the corresponding equation of motion, is also violated by it. So in order to maintain both transversality and the identity it should be disregarded from the very beginning, i.e., put formally zero everywhere. However, we have shown how to preserve the above-mentioned identity at non-zero mass squared parameter. This allows one to establish the structure of the full gluon propagator when it is explicitly present. Its contribution does not survive in the perturbation theory regime, when the gluon momentum goes to infinity. At the same time, its contribution dominates the structure of the full gluon propagator when the gluon momentum goes to zero. We have also proposed a method how to restore transversality of the relevant gluon propagator in a gauge invariant way, while keeping the mass squared parameter “alive”.  相似文献   

7.
The dynamically generated effective gluon mass is known to depend non-trivially on the momentum, decreasing sufficiently fast in the deep ultraviolet, in order for the renormalizability of QCD to be preserved. General arguments based on the analogy with the constituent quark masses, as well as explicit calculations using the operator-product expansion, suggest that the gluon mass falls off as the inverse square of the momentum, relating it to the gauge-invariant gluon condensate of dimension four. In this article we demonstrate that the power law running of the effective gluon mass is indeed dynamically realized at the level of the non-perturbative Schwinger-Dyson equation. We study a gauge-invariant non-linear integral equation involving the gluon self-energy, and establish the conditions necessary for the existence of infrared finite solutions, described in terms of a momentum-dependent gluon mass. Assuming a simplified form for the gluon propagator, we derive a secondary integral equation that controls the running of the mass in the deep ultraviolet. Depending on the values chosen for certain parameters entering into the Ansatz for the fully dressed three-gluon vertex, this latter equation yields either logarithmic solutions, familiar from previous linear studies, or a new type of solutions, displaying power law running. In addition, it furnishes a non-trivial integral constraint, which restricts significantly (but does not determine fully) the running of the mass in the intermediate and infrared regimes. The numerical analysis presented is in complete agreement with the analytic results obtained, showing clearly the appearance of the two types of momentum dependence, well-separated in the relevant space of parameters. Several technical improvements, various open issues, and possible future directions, are briefly discussed.  相似文献   

8.
It is shown that a non-linear integral equation for the gluon propagator in the axial gauge (Baker et al.) can be simplified considerably. A comparison is made with an approximate equation for the gluon propagator in the Landau gauge (Mandelstam). Both equations have polynomial kernels where the argument is the divisor of the internal and external momenta. A solution which behaves as a double pole for low momenta remains consistent.  相似文献   

9.
We do a numerical calculation on the quark-loop effects on the dressed gluon propagator in the chiral limit. It is found that the quark-loop effects on the dressed gluon propagator are significant in solving the quark propagator in the rainbow approximation of the Dyson-Schwinger equation. The approach we used here is quite general and can also be used to calculate both the chemical potential and current quark mass dependence of the dressed gluon propagator.  相似文献   

10.
In this paper the Gribov gap equation at finite temperature is analyzed. The solutions of the gap equation (which depend explicitly on the temperature) determine the structure of the gluon propagator within the semi-classical Gribov approach. The present analysis is consistent with the standard confinement scenario for low temperatures, while for high enough temperatures, deconfinement takes place and a free gluon propagator is obtained. An intermediate regime in between the confined and free phases can be read off from the resulting gluon propagator, which appears to be closely related to partial deconfinement.  相似文献   

11.
We present rigorous upper and lower bounds for the zero-momentum gluon propagator D(0) of Yang-Mills theories in terms of the average value of the gluon field. This allows us to perform a controlled extrapolation of lattice data to infinite volume, showing that the infrared limit of the Landau-gauge gluon propagator in SU(2) gauge theory is finite and nonzero in three and in four space-time dimensions. In the two-dimensional case, we find D(0)=0, in agreement with Maas. We suggest an explanation for these results. We note that our discussion is general, although we apply our analysis only to pure gauge theory in the Landau gauge. Simulations have been performed on the IBM supercomputer at the University of S?o Paulo.  相似文献   

12.
In Landau gauge QCD the Kugo-Ojima confinement criterion and its relations to the infrared behaviour of the gluon and ghost propagators are reviewed. It is demonstrated that the realization of this confinement criterion (which is closely related to the Gribov-Zwanziger horizon condition) results from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement, also quantitatively, with corresponding lattice data obtained recently. The resulting running coupling approaches a fixed point in the infrared, (0) = 8.915/Nc. Solutions for the coupled system of Dyson-Schwinger equations for the quark, gluon and ghost propagators are presented. Dynamical generation of quark masses and thus spontaneous breaking of chiral symmetry takes place. In the quenched approximation the quark propagator functions agree well with those of corresponding lattice calculations. For a small number of light flavours the quark, gluon and ghost propagators deviate only slightly from the ones in quenched approximation. While the positivity violation of the gluon spectral function is manifest in the gluon propagator, there are no clear indications of analogous positivity violations for quarks so far.  相似文献   

13.
Phenomenological consequences of the infrared singular, instantaneous part of the gluon propagator in the Coulomb gauge are investigated. The corresponding quark Dyson-Schwinger equation is solved, neglecting retardation and transverse gluons and regulating the resulting infrared singularities. While the quark propagator vanishes as the infrared regulator goes to zero, the frequency integral over the quark propagator stays finite and well defined. Solutions of the homogeneous Bethe-Salpeter equation for the pseudoscalar and vector mesons as well as for scalar and axial-vector diquarks are obtained. In the limit of a vanishing infrared regulator the diquark masses diverge, while meson properties and diquark radii remain finite and well defined. These features are interpreted with respect to the resulting aspects of confinement for colored quark-quark correlations.  相似文献   

14.
We analyze the Dyson equation/Ward identity system for the axial gauge n · A = 0 gluon propagator Δμν(q)whenn · q = 0. The solution behaves like (q?4 + (q2)ν?1) for small q2, and we are able to calculate the power ν analytically. It turns out to be 0.1737. This analytic calculation verifies our earlier numerical solutions to these equations. For static problems, n · q = 0 is the temporal gauge, and in this gauge the gluon propagator is directly related to the color dielectric constant. We can thus calculate the dielectric constant in the infrared limit.  相似文献   

15.
《Physics letters. [Part B]》1986,175(2):215-218
The axial gauge quark propagator is studied when only the most singular infrared part of the gluon propagator is retained in the Dyson-Schwinger equation. With a new representation for the quark-gluon vertex a simple configuration space propagator and a momentum space form valid for all values of the gauge variable n · p are obtained. The propagator has no poles. The effective potential is minimized when there is no chiral symmetry breaking.  相似文献   

16.
We study a gauge-invariant order parameter for deconfinement and the chiral condensate in SU(2) and SU(3) Yang–Mills theory in the vicinity of the deconfinement phase transition using the Landau gauge quark and gluon propagators. We determine the gluon propagator from lattice calculations and the quark propagator from its Dyson–Schwinger equation, using the gluon propagator as input. The critical temperature and a deconfinement order parameter are extracted from the gluon propagator and from the dependency of the quark propagator on the temporal boundary conditions. The chiral transition is determined using the quark condensate as order parameter. We investigate whether and how a difference in the chiral and deconfinement transition between SU(2) and SU(3) is manifest.  相似文献   

17.
We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang–Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger–Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences.We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi–Rouet–Stora–Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution of the gluon mass is derived, and its solutions are determined numerically following implementation of a set of simplifying assumptions. The obtained mass function is positive definite, and exhibits a power law running that is consistent with general arguments based on the operator product expansion in the ultraviolet region. A possible connection between confinement and the presence of an inflection point in the gluon propagator is briefly discussed.  相似文献   

18.
The QCD gluon equation of motion is solved approximately by means of a Green function. This solution is used to reformulate the Lagrangian of QCD such that the gluon propagator appears directly in the interaction terms of the Lagrangian. The nature of the interactions is discussed. A coordinate-space form of the interactions is presented and analyzed in the static, non-relativistic case.  相似文献   

19.
A nonperturbative approach aimed at the localization of the QCD chiral phase transition atT, π≠0 is presented. We identify this transition with the dynamical quark mass peculiarity which results from the selfconsistent solution of the Schwinger-Dyson equation for the quark propagator. The specific model of the effective quark-gluon interaction, based both on the peculier interpolation for the running coupling constant and on the nonperturbative gluon magnetic and electric masses is exploited. The numerical estimates of the phase diagram are presented and it is shown that phase peculiarities are determined not only by the ultraviolet properties of QCD but also by its infrared structure. The obtained results are discussed, compared with other approaches and a possible interpretation is given.  相似文献   

20.
A nonperturbative approach aimed at the localization of the QCD chiral phase transition atT, π≠0 is presented. We identify this transition with the dynamical quark mass peculiarity which results from the selfconsistent solution of the Schwinger-Dyson equation for the quark propagator. The specific model of the effective quark-gluon interaction, based both on the peculier interpolation for the running coupling constant and on the nonperturbative gluon magnetic and electric masses is exploited. The numerical estimates of the phase diagram are presented and it is shown that phase peculiarities are determined not only by the ultraviolet properties of QCD but also by its infrared structure. The obtained results are discussed, compared with other approaches and a possible interpretation is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号