首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
A transient molecular network model is built to describe the nonlinear viscoelasticity of polymers by considering the effect of entanglement loss and regeneration on the relaxation of molecular strands. It is an extension of previous network theories. The experimental data on three thermoplastic polymers (ABS, PVC and PA6) obtained under various loading conditions are used to test the model. Agreement between the theoretical and experimental curves shows that the suggested model can describe successfully the relaxation behavior of the thermoplastic polymers under different loading rates by using relatively few relaxation modes. Thus the micromechanism responsible for strain-rate dependence of relaxation process and the origin of nonlinear viscoelasticity may be disclosed. The project supported by the National Natural Science Foundation of China and Doctorial Fund  相似文献   

2.
The flow curves of linear (linear-low and high density) and branched polyethylenes are known to differ significantly. At increasing shear rates, the linear polymers exhibit a surface melt fracture or sharkskin region that is followed by an unstable oscillating or stick-slip flow regime when a constant piston speed capillary rheometer is used. At even higher shear rates, gross melt fracture appears. Unlike their linear counterparts, branched polyethylenes rarely exhibit sharkskin melt fracture and although gross melt fracture appears at high shear rates there is no discontinuity in their flow curve. The various flow regimes of these two types of polyethylenes are examined by performing experiments in the melt state using a unique extensional rheometer (the SER by Xpansion Instruments) that is capable of performing accurate extensional flow and peel experiments at very high rates not previously realized. The peel strength curves of these linear and branched polyethylenes exhibit all of the distinct flow regimes exhibited in their respective flow curves, thereby providing a fingerprint of their melt flow behavior. Moreover, these extensional flow and peel results in the melt state provide insight into the origins and mechanisms by which these melt flow phenomena may occur with regard to rapid tensile stress growth, melt rupture, and adhesive failure at the polymer wall interface.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号