首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
由于表面效应、小尺寸效应和量子效应,使纳米结构的导电聚合物材料与传统聚合物材料相比,显示出更优越的性能。基于神经组织对电场和电刺激敏感性,使得导电聚合物纳米材料在生物医学应用方面很有前景。本文综述了纳米结构的导电聚合物的合成方法,及其在生物医学领域的应用。合成方法主要关注于硬模板法、软模板法和无模板自组装法,以及这些方法中导电聚合物纳米结构的形成机理。总结了具有纳米结构的导电聚合物,如纳米颗粒、纳米纤维和纳米管等作为神经电极涂层材料和生物传感器等方面的应用。  相似文献   

2.
石墨烯材料的二维平面结构以及优异的抗渗性使其在防腐领域备受关注,电沉积法可以实现石墨烯片层在涂层中的有序排列,增强涂层对外界腐蚀性电解质的阻隔。简单介绍了电沉积法制备石墨烯涂层的原理,详细综述了近年来以电沉积法制备金属基石墨烯复合涂层和导电聚合物基石墨烯复合涂层的研究进展,分析了石墨烯改善在不同基质涂层的原理。最后,展望了石墨烯、金属和导电聚合物三元复合材料在防腐涂层中的应用,并且对两种复合涂层的优缺点进行了简单的总结。  相似文献   

3.
通过含有KI的聚乙二醇(PEG)与PET熔融共混制得导电聚合物,其在常温下电阻率可达到105Ω.cm左右,电阻率随温度升高而降低,具有离子导电的特性.通过FTIR、DSC和偏光显微镜研究其形态结构和热性能,结果表明该导电聚合物中PEG和PET主要是物理共混,晶区不相容,非晶区具有部分相容性,熔融降温发生相分离,KI/PEG形成连续的一相.该导电聚合物作为导电母粒与PET切片以不同的配比共混纺丝制备出颜色较浅的导电PET纤维.当纤维中导电母粒的质量分数超过10 wt%时,制得的导电纤维的电阻率为106Ω.cm左右,具有较好的耐水洗性.该导电纤维具有双连续相结构,连续的KI/PEG导电相因形成导电通路使纤维具有导电性能;连续的PET相使纤维基本保持PET纤维的力学性能.  相似文献   

4.
导电聚合物微米/纳米管的研究进展   总被引:3,自引:0,他引:3  
介绍了模板及非模板法制备导电聚合物微米 /纳米管的基本合成方法 :详细地分析了影响导电聚合物微米 /纳米管形成的因素 ;对导电聚合物微米 /纳米管的特性及影响因素进行了讨论。  相似文献   

5.
徐又一  陈元胜 《高分子通报》1994,(4):224-228,233
本文回顾了LB膜技术在导电聚合物体系中的利用,内容涉及共轭型导电聚合物(包括聚吡咯、聚噻吩、聚对亚苯基亚乙烯基、聚苯胺及其衍生物)LB膜的制备、结构表征、电导率与分子结构和分子堆砌之间的关系以及其他导电聚合物LB膜的研究现状。  相似文献   

6.
胡传波  厉英  孔亚州  丁玉石 《化学进展》2016,28(8):1238-1250
导电聚合物作为一种新型高分子材料,由于具有可逆的氧化还原特性,在金属腐蚀防护领域具有潜在的应用前景。在众多的导电聚合物中,聚苯胺因其具有独特的抗点蚀、抗划伤和防止海洋生物附着等特殊性能,被广泛应用于金属材料、化学工业和航海航天等领域, 逐渐成为防腐涂料领域的研究热点。本文通过对单一聚苯胺涂层防腐性能不足的分析,系统总结了近年来改性聚苯胺涂层在金属腐蚀防护领域的研究进展,包括单一环取代聚苯胺涂层和N取代聚苯胺涂层、改性聚苯胺复合涂层和改性聚苯胺复合材料/树脂共混复合涂层;通过各种腐蚀测试手段比较了改性聚苯胺涂层与未改性聚苯胺涂层之间防腐性能的优劣,进一步证明了供电子取代基(如烷基、烷氧基和氨基等)能够提高聚苯胺涂层的防腐性能,复合改性或与树脂共混也能够提高聚苯胺及其衍生物涂层的防腐性能;同时展望了聚苯胺及其衍生物涂料未来发展的新趋势。  相似文献   

7.
具有纳微米结构的导电聚合物作为一种重要的新型有机功能材料,近年来已迅速发展成为有机聚合物材料科学领域的主要研究热点之一。本文从化学法和电化学法两种主要的可控合成方法角度,详细综述了具有不同形貌及尺寸微纳米结构的导电聚合物的合成方法与合成过程的研究进展。在这两种合成方法中,又进一步分为硬模板法、软模板法和无模板自组装法三个重要方面。另外,讨论了目前文献中对这些方法得到的微纳米结构导电聚合物的形成机理。  相似文献   

8.
简述导电聚合物酶电极的制备及其在生物传感器领域的应用,主要包括导电聚合物固定酶的方法,反应机理,以及导电聚合物酶电极的最近进展等。  相似文献   

9.
概述了用超临界流体作为物理发泡剂对聚合物基导电复合材料进行微孔发泡的基本原理,总结了聚合物基导电复合材料及其微发泡复合材料的几种导电机理,简要介绍了近年来微孔发泡聚合物基导电复合材料电学性能的研究现状。并从微发泡聚合物基导电复合材料的基体特性、所使用的导电填料类型、导电填料的含量、填料在基体中的分散方法及微发泡复合材料的泡孔形态等几个方面,分析了影响微孔发泡聚合物基导电复合材料电学性能的主要因素,并展望了新型微孔发泡聚合物基导电复合材料的研究和发展趋势。  相似文献   

10.
碘掺杂聚苯胺呋喃是一类非共轭导电聚合物。用紫外吸收光谱、傅里叶变换红外吸收光谱、电子顺磁共振波谱、光电子能谱等对该聚合物的结构性质及导电机制进行了研究。  相似文献   

11.
In many medical and industrial applications, some strategies are needed to control the adhesion forces between the materials, because surface forces can activate or hinder the function of the device. All actual surfaces present some levels of roughness and the contact between two surfaces is transferred by the asperities on the surfaces. The force of the adhesion, which depends on the operating situations, can be influenced by the contact region. The aim of the present study is to predict the adhesion force in MEMS surfaces using the JKR and DMT models. The surfaces of the coating material in this research consisted of the single-layer coating of Gold and Silver, and the double-layer coating of TiO2/Gold and TiO2/Silver on the silicon (100) substrates. The depositing was done by the thermal evaporation method. The results showed that the double-layer coating developed by the new deposition method helped the reduction of the adhesion forces between the probe tip and the specimen surface. The predicted adhesion forces between the probe and the specimens with DMT and JKR models were compared with the experimental results. For all specimens, the simulated data by applying the JKR theory were in a good agreement with the adhesion force experimental values.  相似文献   

12.
We perform oil coating of hydrophobic solid surfaces via aqueous media, from emulsions, and under the presence of a shear flow. The principle of such coating is based on the use of a system at the limit of aggregation to give rise to adhesion, with asymmetrical interfaces (oil droplet/water and solid surface/water) in order to favor the oil/surface adhesion in comparison to the oil/oil adhesion. This way, droplets stick to the solid substrate, whereas they are stable and homogeneously dispersed in the bulk. We have realized coatings from two systems of emulsions made of a mixture of hydroxy-terminated silicone oil and classical silicone oil and a mixture of sunflower oil and mineral oil. The kinetics of the coating is described by a Langmuir model where the adhesion between the oil particle and the surface is modeled as a first-order reaction. The resulting coatings are formed of oil droplets uniformly covering the solid surface. The coating density can vary with the nature of the experimental systems.  相似文献   

13.
利用电化学阻抗(EIS)、扫描微参比技术(SRET)、接触角、粗糙度、附着力、盐雾等测试方法,研究了铝合金阳极氧化与贻贝黏附蛋白(MAP)/CeO2/硅烷γ-APS(MCA)表面复合修饰的腐蚀防护性能以及对改性聚氨酯涂层附着力和耐蚀性的影响。结果表明,MCA复合膜可抑制铝合金的腐蚀,并具有一定的自修复功能;阳极氧化和MCA表面复合修饰可为铝合金提供有效的早期腐蚀防护作用,且能提高铝合金表面粗糙度和润湿性,显著提升改性聚氨酯涂层在铝合金表面的附着力和耐蚀性,因而结合改性聚氨酯涂层和表面复合修饰可实现对铝合金长期有效的腐蚀防护。  相似文献   

14.
The ordinary organic coatings on aluminum alloy usually encounter a problem of low adhesion to the substrate, which results in destruction and failure of the long-term protective performance of the anticorrosion systems. The surface modification of aluminum alloy is able to enhance the adhesion of organic coating on aluminum alloys, and to improve their protective performance. In this work, a combined surface modification of anodic oxidation and mussel adhesion protein/CeO2/3-aminopropyltriethoxysilane composite film (MCA) was developed on the aluminum alloy. The adhesion of modified polyurethane coated on the treated aluminum alloy and its corrosion protective performance were evaluated comprehensively by using contact angle, adhesion strength, electrochemical impedance spectroscopy (EIS), and scanning reference electrode technique (SRET). The measurements of EIS and SRET demonstrated that the MCA composite film on anodic oxidized Al possessed self-healing function and provided effective protection against early corrosion of aluminum alloy. The pull-off test showed that both anodic oxidation treatment and MCA composite film modification were able to increase the adhesion of modified polyurethane coating on aluminum alloy, and their combined action were supposed to remarkably enhance the adhesion strength up to 17.1 MPa. The reason for the improvement of adhesion was that the anodic oxidation treatment and MCA composite film modification could improve the surface roughness of aluminum alloy, and enhance the surface wettability and surface polarity, which is beneficent to enhance the bonding of the modified polyurethane coating to aluminum alloy surface. The EIS results showed that no any corrosion occurred for the modified polyurethane coating on the treated aluminum alloy during 65 d immersion in 3.5wt.% NaCl solution. The impedance value in low frequency range of the modified polyurethane coating always maintained at a high order of magnitude on the aluminum alloy treated by anodic oxidation and MCA composite film modification, showing an excellent protective performance of the coating system. The evaluation of Neutral Salt Spray (NSS) indicated that the modified polyurethane coating on the treated aluminum alloy owned superior corrosion protection performance, and the adhesion strength remained 13.1 MPa and no any corrosion was found at the scratch locations even after 1200 h of salt spray testing. It was concluded that combination of anodic oxidation and MCA composite film were capable of significantly improving the adhesion of modified polyurethane coating on aluminum alloy and providing long-term effective corrosion protection for aluminum alloy. © 2021 Authors. All rights reserved.  相似文献   

15.
The protective mechanisms of paint systems of a 1-pack polyurethane- and an epoxy/2-pack polyurethane-coating system with zinc dust priming coats were investigated on blast-cleaned and on hand-cleaned steel substrates. The coated panels were exposed to the salt spray test and to a cyclic alternating test (VDA 621-415). The protective effect was assessed in determining adhesion, undermining at scratches, water uptake and the corrosion potential. On blast cleaned steel substrates the adhesion of the investigated coating systems was not influenced by water uptake of the coatings. Scratches are especially cathodically protected. On hand-cleaned steel surfaces the rust layer between steel substrate and coating can participate in the corrosion process with rust reduction as cathodic partial reaction. The change of rust morphology is the reason for the loss of adhesion of coating. At scratches rust reduction takes also place at the edge of the defect which is independent from pigments of the base coating.  相似文献   

16.
The influence of Ar/O2 plasma activation and chromic acid etching of polycarbonate (PC) surface on the adhesion of coating to substrate was systematically studied by cross‐cut and tape peel methods through temperature‐shock aging tests. The differences between the wettabilities and elemental compositions of plasma‐treated and chromic acid‐treated PC surfaces prior to coating deposition were evaluated by contact angle measurements and X‐ray photoelectron spectroscopy. To elucidate the adhesion failure of the coatings, nanoindentation technique was employed for the quantitative assessment of the nanomechanical changes of coating depositions on PCs after temperature‐shock aging tests. The two surface treatments can significantly improve the hydrophilicity and polarity of the PC surface, resulting in excellent adhesion of the coating on the PC substrate. Temperature‐shock aging tests reveal that the adhesion of coating on plasma‐modified substrates is superior to that of chromic acid‐etched substrates. We propose that the improved adhesion of the coating on the plasma‐modified PC can be attributed to the higher wettability and more cross‐linking of C–O–Si bonds at the coating–substrate interface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Bioprosthetic heart valves (BHVs) used in the clinic are mostly fixed by glutaraldehyde and the lack of endothelialization is a major problem for glutaraldehyde‐fixed pericardia. Hyaluronic acid is a major glycosaminoglycan that exists in native heart valves. Coupled with its inherent biocompatibility, it may enhance endothelial adhesion and proliferation when associated with vascular endothelial growth factor (VEGF). In this study, an optimized system is developed to improve the endothelialization of glutaraldehyde‐fixed pericardium. A hybrid pericardium with VEGF‐loaded hyaluronic acid hydrogel coating is developed by the crosslinking of 1,4‐butanediol diglycidyl ether. The adhesion and growth potential of human umbilical vein endothelial cells (HUVECs) on pericardia, platelet adhesion, and calcification by an in vivo rat subdermal implantation model are investigated. The results show improved HUVEC adhesion and proliferation, less platelet adhesion, and less calcification for hybrid pericardium by introducing the coating of VEGF‐loaded hyaluronic acid hydrogel. Thus, the coating of VEGF‐loaded hyaluronic acid hydrogel on pericardium is a promising approach to obtain bioprosthetic valves for clinical applications with increased endothelialization and antithrombotic and anticalcification properties.  相似文献   

18.
Coupling of combinatorial chemistry methods with high-throughput (HT) performance testing and measurements of resulting properties has provided a powerful set of tools for the 10-fold accelerated discovery of new high-performance coating materials for automotive applications. Our approach replaces labor-intensive steps with automated systems for evaluation of adhesion of 8 x 6 arrays of coating elements that are discretely deposited on a single 9 x 12 cm plastic substrate. Performance of coatings is evaluated with respect to their resistance to adhesion loss, because this parameter is one of the primary considerations in end-use automotive applications. Our HT adhesion evaluation provides previously unavailable capabilities of high speed and reproducibility of testing by using a robotic automation, an expanded range of types of tested coatings by using the coating tagging strategy, and an improved quantitation by using high signal-to-noise automatic imaging. Upon testing, the coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Using our HT methodology, we have developed several coatings leads. These HT screening results for the best coating compositions have been validated on the traditional scales of coating formulation and adhesion loss testing. These validation results have confirmed the superb performance of combinatorially developed coatings over conventional coatings on the traditional scale.  相似文献   

19.
Organic-inorganic hybrid coatings, obtained through the sol-gel chemistry from tetraethoxysilane and polyethylene-poly(ethylene glycol) block copolymer, have been prepared in different compositions and applied to untreated and plasma treated LDPE films by spin coating. The mechanical properties of the coatings and the adhesion between coating and substrate have been characterized by fragmentation test. An increase in coating strength, elongation at break and adhesion has been observed with increasing the organic fraction in the hybrid coating. A plasma treatment of the LDPE surface, just before the application of the coating, lead to an increase of the adhesion between coating and substrate (interfacial shear strength), leaving almost unaffected coating strength and strain at fragmentation onset.  相似文献   

20.
水凝胶防污材料因其环保特性成为当前海洋防污领域的研究热点,然而其黏附及力学性能的不足仍是限制其实际应用的技术关键。本研究在油性结构单元增加黏附的两亲性水凝胶的基础上,通过物理共混引入Al2O3、 TiO2、蒙脱土和高岭土赋予两亲性水凝胶涂层更多的黏附机制并考察它们对水凝胶涂层其它性能的影响。研究发现,随着无机填料的引入和含量的增加,水凝胶涂层的黏附性能大幅增加,静态泡板和动态划水的不脱落时间分别提高6倍和2.5倍。其中,TiO2和高岭土能使水凝胶涂层的应力明显增强。虽然,无机填料的加入使两亲性水凝胶涂层抑制牛血清蛋白及小新月菱形藻吸附的能力下降,但在实海挂板实验中依然表现出相当的防污能力,且具有一定的实际应用价值。本研究为探讨无机填料对水凝胶涂层性能的影响提供了一些参考,并对提高两亲性水凝胶涂层黏附及力学性能提供了一种策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号