首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Various interesting and potentially useful properties and relationships involving the Bernoulli, Euler and Genocchi polynomials have been investigated in the literature rather extensively. Recently, the present authors (Srivastava and Pinter in Appl Math Lett 17:375–380, 2004) obtained addition theorems and other relationships involving the generalized Bernoulli polynomials ${B_n^{(\alpha)}(x)}$ and the generalized Euler polynomials ${E_n^{(\alpha)}(x)}$ of order α and degree n in x. The main purpose of this sequel to some of the aforecited investigations is to give several addition formulas for a general class of Appell sequences. The addition formulas, which are derived in this paper, involve not only the generalized Bernoulli polynomials ${B_n^{(\alpha)}(x)}$ and the generalized Euler polynomials ${E_n^{(\alpha)}(x)}$ , but also the generalized Genocchi polynomials ${G_n^{(\alpha)}(x)}$ , the Srivastava polynomials ${\mathcal{S}_{n}^{N}\left( x\right)}$ , several general families of hypergeometric polynomials and such orthogonal polynomials as the Jacobi, Laguerre and Hermite polynomials. Some umbral-calculus generalizations of the addition formulas are also investigated.  相似文献   

3.
We denote by Conc A the ${(\vee, 0)}$ -semilattice of all finitely generated congruences of an algebra A. A lifting of a ${(\vee, 0)}$ -semilattice S is an algebra A such that ${S \cong {\rm Con}_{\rm c} A}$ . The assignment Conc can be extended to a functor. The notion of lifting is generalized to diagrams of ${(\vee, 0)}$ -semilattices. A gamp is a partial algebra endowed with a partial subalgebra together with a semilattice-valued distance; gamps form a category that lends itself to a universal algebraic-type study. The raison d’être of gamps is that any algebra can be approximated by its finite subgamps, even in case it is not locally finite. Let ${\mathcal{V}}$ and ${\mathcal{W}}$ be varieties of algebras (on finite, possibly distinct, similarity types). Let P be a finite lattice. We assume the existence of a combinatorial object, called an ${\aleph_0}$ -lifter of P, of infinite cardinality ${\lambda}$ . Let ${\vec{A}}$ be a P-indexed diagram of finite algebras in ${\mathcal{V}}$ . If ${{\rm Con}_{\rm c} \circ \vec{A}}$ has no partial lifting in the category of gamps of ${\mathcal{W}}$ , then there is an algebra ${A \in \mathcal{V}}$ of cardinality ${\lambda}$ such that Conc A is not isomorphic to Conc B for any ${B \in \mathcal{W}}$ . This makes it possible to generalize several known results. In particular, we prove the following theorem, without assuming that ${\mathcal{W}}$ is locally finite. Let ${\mathcal{V}}$ be locally finite and let ${\mathcal{W}}$ be congruence-proper (i.e., congruence lattices of infinite members of ${\mathcal{W}}$ are infinite). The following equivalence holds. Every countable ${(\vee, 0)}$ -semilattice with a lifting in ${\mathcal{V}}$ has a lifting in ${\mathcal{W}}$ if and only if every ${\omega}$ -indexed diagram of finite ${(\vee, 0)}$ -semilattices with a lifting in ${\mathcal{V}}$ has a lifting in ${\mathcal{W}}$ . Gamps are also applied to the study of congruence-preserving extensions. Let ${\mathcal{V}}$ be a non-semidistributive variety of lattices and let n ≥ 2 be an integer. There is a bounded lattice ${A \in \mathcal{V}}$ of cardinality ${\aleph_1}$ with no congruence n-permutable, congruence-preserving extension. The lattice A is constructed as a condensate of a square-indexed diagram of lattices.  相似文献   

4.
Let V be a two-dimensional absolutely irreducible ${\overline{\mathbb Qp}}$ -representation of ${{\rm Gal}(\overline{\mathbb Qp}/\mathbb Qp)}$ and let ${\prod(V)}$ be the ${{\rm GL}_2(\mathbb Qp)}$ Banach representation associated by Colmez??s p-adic Langlands correspondence. We establish a link between the action of the Lie algebra of ${{\rm GL}_2(\mathbb Qp)}$ on the locally analytic vectors ${\prod(V)^{\rm an}}$ of ${\prod(V)}$ , the connection ${\nabla}$ on the ${(\varphi, \Gamma)}$ -module associated to V and the Sen polynomial of V. This answers a question of Harris, concerning the infinitesimal character of ${\prod(V)^{\rm an}}$ . Using this result, we give a new proof of a theorem of Colmez, stating that ${\prod(V)}$ has nonzero locally algebraic vectors if and only if V is potentially semi-stable with distinct Hodge?CTate weights.  相似文献   

5.
This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

6.
Let ${(\mathcal {X},\Omega)}$ be a closed polarized complex manifold, g be an extremal metric on ${\mathcal {X}}$ that represents the Kähler class Ω, and G be a compact connected subgroup of the isometry group Isom ${(\mathcal {X}, g)}$ . Assume that the Futaki invariant relative to G is nondegenerate at g. Consider a smooth family ${(\mathcal {M}\to B)}$ of polarized complex deformations of ${(\mathcal {X},\Omega)\simeq (\mathcal {M}_0,\Theta_0)}$ provided with a holomorphic action of G which is trivial on B. Then for every ${t\in B}$ sufficiently small, there exists an ${h^{1,1}(\mathcal {X})}$ -dimensional family of extremal Kähler metrics on ${\mathcal {M}_t}$ whose Kähler classes are arbitrarily close to Θ t . We apply this deformation theory to show that certain complex deformations of the Mukai–Umemura 3-fold admit Kähler–Einstein metrics.  相似文献   

7.
Let (M,g) be an n-dimensional, compact Riemannian manifold and ${P_0(\hbar) = -\hbar{^2} \Delta_g + V(x)}$ be a semiclassical Schrödinger operator with ${\hbar \in (0,\hbar_0]}$ . Let ${E(\hbar) \in [E-o(1),E+o(1)]}$ and ${(\phi_{\hbar})_{\hbar \in (0,\hbar_0]}}$ be a family of L 2-normalized eigenfunctions of ${P_0(\hbar)}$ with ${P_0(\hbar) \phi_{\hbar} = E(\hbar) \phi_{\hbar}}$ . We consider magnetic deformations of ${P_0(\hbar)}$ of the form ${P_u(\hbar) = - \Delta_{\omega_u}(\hbar) + V(x)}$ , where ${\Delta_{\omega_u}(\hbar) = (\hbar d + i \omega_u(x))^*({\hbar}d + i \omega_u(x))}$ . Here, u is a k-dimensional parameter running over ${B^k(\epsilon)}$ (the ball of radius ${\epsilon}$ ), and the family of the magnetic potentials ${(w_u)_{u\in B^k(\epsilon)}}$ satisfies the admissibility condition given in Definition 1.1. This condition implies that kn and is generic under this assumption. Consider the corresponding family of deformations of ${(\phi_{\hbar})_{\hbar \in (0, \hbar_0]}}$ , given by ${(\phi^u_{\hbar})_{\hbar \in(0, \hbar_0]}}$ , where $$\phi_{\hbar}^{(u)}:= {\rm e}^{-it_0 P_u(\hbar)/\hbar}\phi_{\hbar}$$ for ${|t_0|\in (0,\epsilon)}$ ; the latter functions are themselves eigenfunctions of the ${\hbar}$ -elliptic operators ${Q_u(\hbar): ={\rm e}^{-it_0P_u(\hbar)/\hbar} P_0(\hbar) {\rm e}^{it_0 P_u(\hbar)/\hbar}}$ with eigenvalue ${E(\hbar)}$ and ${Q_0(\hbar) = P_{0}(\hbar)}$ . Our main result, Theorem1.2, states that for ${\epsilon >0 }$ small, there are constants ${C_j=C_j(M,V,\omega,\epsilon) > 0}$ with j = 1,2 such that $$C_{1}\leq \int\limits_{\mathcal{B}^k(\epsilon)} |\phi_{\hbar}^{(u)}(x)|^2 \, {\rm d}u \leq C_{2}$$ , uniformly for ${x \in M}$ and ${\hbar \in (0,h_0]}$ . We also give an application to eigenfunction restriction bounds in Theorem 1.3.  相似文献   

8.
9.
Let ${(\phi, \psi)}$ be an (m, n)-valued pair of maps ${\phi, \psi : X \multimap Y}$ , where ${\phi}$ is an m-valued map and ${\psi}$ is n-valued, on connected finite polyhedra. A point ${x \in X}$ is a coincidence point of ${\phi}$ and ${\psi}$ if ${\phi(x) \cap \psi(x) \neq \emptyset}$ . We define a Nielsen coincidence number ${N(\phi : \psi)}$ which is a lower bound for the number of coincidence points of all (m, n)-valued pairs of maps homotopic to ${(\phi, \psi)}$ . We calculate ${N(\phi : \psi)}$ for all (m, n)-valued pairs of maps of the circle and show that ${N(\phi : \psi)}$ is a sharp lower bound in that setting. Specifically, if ${\phi}$ is of degree a and ${\psi}$ of degree b, then ${N(\phi : \psi) = \frac{|an - bm|}{\langle m, n \rangle}}$ , where ${\langle m, n \rangle}$ is the greatest common divisor of m and n. In order to carry out the calculation, we obtain results, of independent interest, for n-valued maps of compact connected Lie groups that relate the Nielsen fixed point number of Helga Schirmer to the Nielsen root number of Michael Brown.  相似文献   

10.
We give a classification of pairs ${(\mathcal{F}, \phi)}$ where ${\mathcal{F}}$ is a holomorphic foliation on a projective surface and ${\phi}$ is a non-invertible dominant rational map preserving ${\mathcal{F}}$ .  相似文献   

11.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

12.
We consider the following question: Given a connected open domain ${\Omega \subset \mathbb{R}^n}$ , suppose ${u, v : \Omega \rightarrow \mathbb{R}^n}$ with det ${(\nabla u) > 0}$ , det ${(\nabla v) > 0}$ a.e. are such that ${\nabla u^T(x)\nabla u(x) = \nabla v(x)^T \nabla v(x)}$ a.e. , does this imply a global relation of the form ${\nabla v(x) = R\nabla u(x)}$ a.e. in Ω where ${R \in SO(n)}$ ? If u, v are C 1 it is an exercise to see this true, if ${u, v\in W^{1,1}}$ we show this is false. In Theorem 1 we prove this question has a positive answer if ${v \in W^{1,1}}$ and ${u \in W^{1,n}}$ is a mapping of L p integrable dilatation for p > n ? 1. These conditions are sharp in two dimensions and this result represents a generalization of the corollary to Liouville’s theorem that states that the differential inclusion ${\nabla u \in SO(n)}$ can only be satisfied by an affine mapping. Liouville’s corollary for rotations has been generalized by Reshetnyak who proved convergence of gradients to a fixed rotation for any weakly converging sequence ${v_k \in W^{1,1}}$ for which $$\int \limits_{\Omega} {\rm dist}(\nabla v_k, SO(n))dz \rightarrow 0 \, {\rm as} \, k \rightarrow \infty.$$ Let S(·) denote the (multiplicative) symmetric part of a matrix. In Theorem 3 we prove an analogous result to Theorem 1 for any pair of weakly converging sequences ${v_k \in W^{1,p}}$ and ${u_k \in W^{1,\frac{p(n-1)}{p-1}}}$ (where ${p \in [1, n]}$ and the sequence (u k ) has its dilatation pointwise bounded above by an L r integrable function, rn ? 1) that satisfy ${\int_{\Omega} |S(\nabla u_k) - S(\nabla v_k)|^p dz \rightarrow 0}$ as k → ∞ and for which the sign of the det ${(\nabla v_k)}$ tends to 1 in L 1. This result contains Reshetnyak’s theorem as the special case (u k ) ≡ Id, p = 1.  相似文献   

13.
For an algebra ${\mathcal{A}}$ of complex-valued, continuous functions on a compact Hausdorff space (X, τ), it is standard practice to assume that ${\mathcal{A}}$ separates points in the sense that for each distinct pair ${x, y \in X}$ , there exists an ${f \in \mathcal{A}}$ such that ${f(x) \neq f(y)}$ . If ${\mathcal{A}}$ does not separate points, it is known that there exists an algebra ${\widehat{\mathcal{A}}}$ on a compact Hausdorff space ${(\widehat{X}, \widehat{\tau})}$ that does separate points such that the map ${\mathcal{A} \mapsto \widehat{\mathcal{A}}}$ is a uniform norm isometric algebra isomorphism. So it is, to a degree, without loss of generality that we assume ${\mathcal{A}}$ separates points. The construction of ${{\widehat{\mathcal{A}}}}$ and ${(\widehat{X}, \widehat{\tau})}$ does not require that ${\mathcal{A}}$ has any algebraic structure nor that ${(X, \tau)}$ has any properties, other than being a topological space. In this work we develop a framework for determining the degree to which separation of points may be assumed without loss of generality for any family ${\mathcal{A}}$ of bounded, complex-valued, continuous functions on any topological space ${(X, \tau)}$ . We also demonstrate that further structures may be preserved by the mapping ${\mathcal{A} \mapsto \widehat{\mathcal{A}}}$ , such as boundaries of weak peak points, the Lipschitz constant when the functions are Lipschitz on a compact metric space, and the involutive structure of real function algebras on compact Hausdorff spaces.  相似文献   

14.
Let F be a p-adic field with odd residual characteristic. This work is the continuation of a previous paper that contains some detailed computations of the doubling integral for irreducible constituents ${(\pi, \mathcal{V}_{\pi})}$ of the genuine unramified principal series of ${\widetilde{Sp}_2(F)}$ using various “good test data”. This paper aims to interpret those results in terms of the non-vanishing of local theta lifts. Assuming a technical condition on order of a particular pole for the family of doubling integrals for ${(\pi, \mathcal{V}_{\pi})}$ , we aim to determine the so-called “dichotomy sign” of ${(\pi, \mathcal{V}_{\pi})}$ .  相似文献   

15.
An inaccessible cardinal κ is supercompact when (κ, λ)-ITP holds for all λ?≥ κ. We prove that if there is a model of ZFC with two supercompact cardinals, then there is a model of ZFC where simultaneously ${(\aleph_2, \mu)}$ -ITP and ${(\aleph_3, \mu')}$ -ITP hold, for all ${\mu\geq \aleph_2}$ and ${\mu'\geq \aleph_3}$ .  相似文献   

16.
We consider the pseudo-euclidean space ${(\mathbb{R}^n, g)}$ , with n ≥  3 and ${g_{ij} = \delta_{ij} \varepsilon_i, \varepsilon_i = \pm 1}$ and tensors of the form ${T = \sum \nolimits_i \varepsilon_i f_i (x) dx_i^2}$ . In this paper, we obtain necessary and sufficient conditions for a diagonal tensor to admit a metric ${\bar{g}}$ , conformal to g, so that ${A_{\bar g}=T}$ , where ${A_{\bar g}}$ is the Schouten Tensor of the metric ${\bar g}$ . The solution to this problem is given explicitly for special cases for the tensor T, including a case where the metric ${\bar g}$ is complete on ${\mathbb{R}^n}$ . Similar problems are considered for locally conformally flat manifolds. As an application of these results we consider the problem of finding metrics ${\bar g}$ , conformal to g, such that ${\sigma_2 ({\bar g })}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })}}$ is equal to a given function. We prove that for some functions, f 1 and f 2, there exist complete metrics ${\bar{g} = g/{\varphi^2}}$ , such that ${\sigma_2 ({\bar g }) = f_1}$ or ${\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })} = f_2}$ .  相似文献   

17.
Given a complex Krein space ${\mathcal{H}}$ with fundamental symmetry J, the aim of this note is to characterize the set of J-normal projections $$\mathcal{Q}=\{Q \in L(\mathcal{H}) : Q^2=Q \,{\rm and}\, Q^{\#}Q=QQ^{\#}\}.$$ The ranges of the projections in ${\mathcal{Q}}$ are exactly those subspaces of ${\mathcal{H}}$ which are pseudo-regular. For a fixed pseudo-regular subspace ${\mathcal{S}}$ , there are infinitely many J-normal projections onto it, unless ${\mathcal{S}}$ is regular. Therefore, most of the material herein is devoted to parametrizing the set of J-normal projections onto a fixed pseudo-regular subspace ${\mathcal{S}}$ .  相似文献   

18.
Let ${\phi}$ be a rational function of degree at least two defined over a number field k. Let ${a \in \mathbb{P}^1(k)}$ and let K be a number field containing k. We study the cardinality of the set of rational iterated preimages Preim ${(\phi, a, K) = \{x_{0} \in \mathbb{P}^1(K) | \phi^{N} (x_0) = a {\rm for some} N \geq 1\}}$ . We prove two new results (Theorems 2 and 4) bounding ${|{\rm Preim}(\phi, a, K)|}$ as ${\phi}$ varies in certain families of rational functions. Our proofs are based on unit equations and a method of Runge for effectively determining integral points on certain affine curves. We also formulate and state a uniform boundedness conjecture for Preim ${(\phi, a, K)}$ and prove that a version of this conjecture is implied by other well-known conjectures in arithmetic dynamics.  相似文献   

19.
Let ${(\Omega, \mathcal{F}, P)}$ be a probability space. For each ${\mathcal{G}\subset\mathcal{F}}$ , define ${\overline{\mathcal{G}}}$ as the σ-field generated by ${\mathcal{G}}$ and those sets ${F\in \mathcal{F}}$ satisfying ${P(F)\in\{0,1\}}$ . Conditions for P to be atomic on ${\cap_{i=1}^k\overline{\mathcal{A}_i}}$ , with ${\mathcal{A }_1,\ldots,\mathcal{A}_k\subset\mathcal{F}}$ sub-σ-fields, are given. Conditions for P to be 0-1-valued on ${\cap_{i=1}^k \overline{\mathcal{A}_i}}$ are given as well. These conditions are useful in various fields, including Gibbs sampling, iterated conditional expectations and the intersection property.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号