首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere – with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere – with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores.  相似文献   

2.
The literature is contradictory regarding the effect of static magnetic fields on the function of the central nervous system of mammals. Since human subjects are exposed to intense static magnetic fields during magnetic resonance imaging, it is important to determine if the static magnetic field adversely affects the nervous system of man. Therefore, somato-sensory evoked potentials (SEPs) elicited from median nerve stimulation were measured in 11 normal subjects before and during short-term exposure to a 1.5 Tesla static magnetic field. Specially modified instrumentation was used to record SEPs that were unperturbed by the static magnetic field. There were no statistically significant differences in the N20 or P25 latencies or in the amplitude from N20 negative peak to P25 positive peak of the SEPs obtained before compared to those recorded during exposure to the static magnetic field. In addition, there were no changes in the waveforms associated with exposure to the static magnetic field. We conclude that short-term exposure to a 1.5 Tesla static magnetic field does not affect SEPs (i.e., nerve conduction and synaptic transmission were within normal limits) in normal human subjects.  相似文献   

3.
We studied a patient with refractory focal epilepsy using continuous EEG-correlated fMRI. Seizures were characterized by head turning to the left and clonic jerking of the left arm, suggesting a right frontal epileptogenic region. Interictal EEG showed occasional runs of independent nonlateralized slow activity in the delta band with right frontocentral dominance and had no lateralizing value. Ictal scalp EEG had no lateralizing value. Ictal scalp EEG suggested right-sided central slow activity preceding some seizures. Structural 3-T MRI showed no abnormality. There was no clear epileptiform abnormality during simultaneous EEG-fMRI. We therefore modeled asymmetrical EEG delta activity at 1-3 Hz near frontocentral electrode positions. Significant blood oxygen level-dependent (BOLD) signal changes in the right superior frontal gyrus correlated with right frontal oscillations at 1-3 Hz but not at 4-7 Hz and with neither of the two frequency bands when derived from contralateral or posterior electrode positions, which served as controls. Motor fMRI activations with a finger-tapping paradigm were asymmetrical: they were more anterior for the left hand compared with the right and were near the aforementioned EEG-correlated signal changes. A right frontocentral perirolandic seizure onset was identified with a subdural grid recording, and electric stimulation of the adjacent contact produced motor responses in the left arm and after discharges. The fMRI localization of the left hand motor and the detected BOLD activation associated with modeled slow activity suggest a role for localization of the epileptogenic region with EEG-fMRI even in the absence of clear interictal discharges.  相似文献   

4.

Background  

The interaction between homologous muscle representations in the right and left primary motor cortex was studied using a paired-pulse transcranial magnetic stimulation (TMS) protocol known to evoke interhemispheric inhibition (IHI). The timecourse and magnitude of IHI was studied in fifteen healthy right-handed adults at several interstimulus intervals between the conditioning stimulus and test stimulus (6, 8, 10, 12, 30, 40, 50 ms). IHI was studied in the motor dominant to non-dominant direction and vice versa while the right or left hand was at rest, performing isometric contraction of the first dorsal interosseous (FDI) muscle, and isometric contraction of the FDI muscle in the context of holding a pen.  相似文献   

5.
Passive electrical stimulation activates various human somatosensory cortical systems including the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII) and bilateral insula. The effect of stimulation frequency on blood oxygenation level-dependent (BOLD) activity remains unclear. We acquired 3-T functional magnetic resonance imaging (fMRI) in eight healthy volunteers during electrical median nerve stimulation at frequencies of 1, 3 and 10 Hz. During stimulation BOLD signal changes showed activation in the contralateral SI, bilateral SII and bilateral insula. Results of fMRI analysis showed that these areas were progressively active with the increase of rate of stimulation. As a major finding, the contralateral SI showed an increase of peak of BOLD activation from 1 to 3 Hz but reached a plateau during 10-Hz stimulation. Our finding is of interest for basic research and for clinical applications in subjects unable to perform cognitive tasks in the fMRI scanner.  相似文献   

6.

Background  

Evoked potentials have been proposed to result from phase-locking of electroencephalographic (EEG) activities within specific frequency bands. However, the respective contribution of phasic activity and phase resetting of ongoing EEG oscillation remains largely debated. We here applied the EEGlab procedure in order to quantify the contribution of electroencephalographic oscillation in the generation of the frontal N30 component of the somatosensory evoked potentials (SEP) triggered by median nerve electrical stimulation at the wrist. Power spectrum and intertrial coherence analysis were performed on EEG recordings in relation to median nerve stimulation.  相似文献   

7.

Background  

Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS.  相似文献   

8.

Background  

The right hemisphere may play an important role in paralinguistic features such as the emotional melody in speech. The extent of this involvement however is unclear. Imaging studies have shown involvement of both left and right inferior frontal gyri in emotional prosody perception. The present pilot study examined whether these brain areas are critically involved in the processing of emotional prosody and of semantics in 9 healthy subjects. Repetitive transcranial magnetic stimulation was used with a coil centred over left and right inferior frontal gyri, as localized by neuronavigation based on the subject's MRI. A sham condition was included. An online-TMS approach was applied; an emotional language task was completed during stimulation. This computerized task consisted of sentences pronounced by actors. In the semantics condition an emotion (fear, anger or neutral) was expressed in the content pronounced with a neutral intonation. In the prosody condition the emotion was expressed in the intonation, while the content was neutral.  相似文献   

9.
The dorsal stream is a dominant visuomotor pathway that connects the striate and extrastriate cortices to posterior parietal areas. In turn, the posterior parietal areas send projections to the frontal primary motor and premotor areas. This cortical pathway is hypothesized to be involved in the transformation of a visual input into the appropriate motor output. In this study we used functional magnetic resonance imaging (fMRI) of the entire brain to determine the patterns of activation that occurred while subjects performed a visually guided motor task. In nine human subjects, fMRI data were acquired on a 4-T whole-body MR system equipped with a head gradient coil and a birdcage RF coil using aT*2-weighted EPI sequence. Functional activation was determined for three different tasks: (1) a visuomotor task consisting of moving a cursor on a screen with a joystick in relation to various targets, (2) a hand movement task consisting of moving the joystick without visual input, and (3) a eye movement task consisting of moving the eyes alone without visual input. Blood oxygenation level-dependent (BOLD) contrast-based activation maps of each subject were generated using period cross-correlation statistics. Subsequently, each subject's brain was normalized to Talairach coordinates, and the individual maps were compared on a pixel by pixel basis. Significantly activated pixels common to at least four out of six subjects were retained to construct the final functional image. The pattern of activation during visually guided movements was consistent with the flow of information from striate and extrastriate visual areas, to the posterior parietal complex, and then to frontal motor areas. The extensive activation of this network and the reproducibility among subjects is consistent with a role for the dorsal stream in transforming visual information into motor behavior. Also extensively activated were the medial and lateral cerebellar structures, implicating the cortico–ponto–cerebellar pathway in visually guided movements. Thalamic activation, particularly of the pulvinar, suggests that this nucleus is an important subcortical target of the dorsal stream.  相似文献   

10.

Background  

Water immersion therapy is used to treat a variety of cardiovascular, respiratory, and orthopedic conditions. It can also benefit some neurological patients, although little is known about the effects of water immersion on neural activity, including somatosensory processing. To this end, we examined the effect of water immersion on short-latency somatosensory evoked potentials (SEPs) elicited by median nerve stimuli. Short-latency SEP recordings were obtained for ten healthy male volunteers at rest in or out of water at 30°C. Recordings were obtained from nine scalp electrodes according to the 10-20 system. The right median nerve at the wrist was electrically stimulated with the stimulus duration of 0.2 ms at 3 Hz. The intensity of the stimulus was fixed at approximately three times the sensory threshold.  相似文献   

11.
使用10 Hz调制的低功率激光针灸刺激探究大脑皮质反应.以功能性核磁共振造影技术探讨当激光针灸刺激左脚涌泉穴(K1)时,大脑可能产生的反应机制.研究发现调制激光针灸所引发显著的大脑活化反应,包括右额叶中央前回、右额叶上回、左额叶中央前回、左顶叶中央后回、左侧下部顶叶、左小脑舌前叶、左海马旁回和左小脑山顶等区域.安慰剂组实验并没有发现在脑部有任何活化反应,大多数反应区域所涉及功能与记忆、注意力及自我意识等有关联.结果显示出调制激光针灸的大脑血液动力学反应,并隐含此反应机制不只是依据传入感觉信息处理,而且还有着随外部刺激的变化而有所改变的血液动力学性质.  相似文献   

12.

Background

Continuous theta burst stimulation (cTBS) is a form of repetitive transcranial magnetic stimulation which has been shown to alter cortical excitability in the upper limb representation of primary somatosensory cortex (SI). However, it is unknown whether cTBS modulates cortical excitability within the lower limb representation in SI. The present study investigates the effects of cTBS over the SI lower limb representation on cortical somatosensory evoked potentials (SEPs) and Hoffmann reflex (H-reflex) following tibial nerve stimulation at the knee. SEPs and H-reflex were recorded before and in four time blocks up to 30 minutes following cTBS targeting the lower limb representation within SI.

Results

Following cTBS, the P1-N1 first cortical potential was significantly decreased at 12?C16 minutes. CTBS also suppressed the P2-N2 second cortical potential for up to 30 minutes following stimulation. The H-reflex remained statistically unchanged following cTBS although there was a modest suppression observed.

Conclusion

We conclude that cTBS decreases cortical excitability of the lower limb representation of SI as evidenced by suppressed SEP amplitude. The duration and magnitude of the cTBS after effects are similar to those observed in upper limb studies.  相似文献   

13.
Functional MRI of motor and sensory activation in the human spinal cord   总被引:6,自引:0,他引:6  
MR imaging of the cervical spinal cord was carried out on volunteers during alternated rest and either motor or sensory stimulation of one hand, in order to detect image intensity changes arising concomitant to neuronal activity. We employed both spin-echo and gradient-echo echo-planar imaging, on the right and left hands, with both symmetric and asymmetric temporal patterns of rest and stimulation. Intensity changes correlated with the time course of stimulation were consistently detected, and the magnitude of the intensity changes depended on the duration of stimulation. The activated regions in the spinal cord extended along a column on the side of the body being stimulated and included localized regions on the contralateral side, in agreement with the neural anatomy.  相似文献   

14.
Median nerve stimulation is a commonly used technique in the clinical setting to determine areas of neuronal function in the brain. Neuronal activity of repeated median nerve stimulation is well studied. The cerebral hemodynamic response of the stimulation, on the other hand, is not very clear. In this study, we investigate how cerebral hemodynamics behave over time using the same repeated median nerve stimulation. Ten subjects received constant repeated electrical stimulation to the right median nerve. Each subject had functional magnetic resonance imaging scans while receiving said stimulations for seven runs. Our results show that the blood oxygen level-dependent (BOLD) signal significantly decreases across each run. Significant BOLD signal decreases can also be seen within runs. These results are consistent with studies that have studied the hemodynamic habituation effect with other forms of stimulation. However, the results do not completely agree with the findings of studies where evoked potentials were examined. Thus, further inquiry of how evoked potentials and cerebral hemodynamics are coupled when using constant stimulations is needed.  相似文献   

15.
Mirror therapy can be used to promote recovery from paralysis in patients with post-stroke hemiplegia, There are a lot of reports that mirror-image observation of the unilateral moving hand enhanced the excitability of the primary motor area (M1) ipsilateral to the moving hand in healthy subjects. but the neural mechanisms underlying its therapeutic effects are currently unclear. To investigate this issue, we used functional magnetic resonance imaging to measure activity in brain regions related to visual information processing during mirror image movement observation. Thirteen healthy subjects performed a finger-thumb opposition task with the left and right hands separately, with or without access to mirror observation. In the mirror condition, one hand was reflected in a mirror placed above the abdomen in the MRI scanner. In the masked mirror condition, subjects performed the same task but with the mirror obscured. In both conditions, the other hand was held at rest behind the mirror. A between-task comparison (mirror versus masked mirror) revealed significant activation in the ipsilateral hemisphere in the anterior intraparietal sulcus (aIP) while performing all tasks, regardless of which hand was used. The right aIP was significantly activated while moving the right hand. In contrast, in the left aIP, a small number of voxels showed a tendency toward activation during both left and right hand movement. The enhancement of ipsilateral aIP activity by the mirror image observation of finger action suggests that bimodal aIP neurons can be activated by visual information. We propose that activation in the M1 ipsilateral to the moving hand can be induced by information passing through the ventral premotor area from the aIP.  相似文献   

16.
Functional magnetic resonance imaging (fMRI) was performed in 30 healthy adults to identify the location, magnitude, and extent of activation in brain regions that are engaged during the performance of Conners' Continuous Performance Test (CPT). Performance on the task during fMRI was highly correlated with performance on the standard Conners' CPT in the behavioral testing laboratory. An extensive neural network was activated during the task that included the frontal, cingulate, parietal, temporal, and occipital cortices; the cerebellum and the basal ganglia. There was also a network of brain regions which were more active during fixation than task. The magnitude of activation in several regions was correlated with reaction time. Among regions that were more active during task, the overall volume of supratentorial activation and cerebellar activation was greater in the left hemisphere. Frontal activation was greater in dorsal than in ventral regions, and dorsal frontal activation was bilateral. Ventral frontal region and parietal lobe activation were greater in the right hemisphere. The volume of clusters of activation in the extrastriate ventral visual pathway was greater in the left hemisphere. This network is consistent with existing models of motor control, visual object processing and attentional control and may serve as a basis for hypothesis-driven fMRI studies in clinical populations with deficits in Conners' CPT performance.  相似文献   

17.

Background  

Transcranial direct current stimulation (tDCS) is a technique that can systematically modify behaviour by inducing changes in the underlying brain function. In order to better understand the neuromodulatory effect of tDCS, the present study examined the impact of tDCS on performance in a working memory (WM) task and its underlying neural activity. In two experimental sessions, participants performed a letter two-back WM task after sham and either anodal or cathodal tDCS over the left dorsolateral prefrontal cortex (DLPFC).  相似文献   

18.

Background  

The aim of this study was to examine the relationship between chronic neuropathic pain after incomplete peripheral nerve lesion, chronic nociceptive pain due to osteoarthritis, and the excitability of the motor cortex assessed by transcranial magnetic stimulation (TMS). Hence in 26 patients with neuropathic pain resulting from an isolated incomplete lesion of the median or ulnar nerve (neuralgia), 20 patients with painful osteoarthritis of the hand, and 14 healthy control subjects, the excitability of the motor cortex was tested using paired-pulse TMS to assess intracortical inhibition and facilitation. These excitability parameters were compared between groups, and the relationship between excitability parameters and clinical parameters was examined.  相似文献   

19.
Several functional brain imaging studies of pain using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have shown that painful stimulation causes activation of different brain areas. The aim of the present study was to develop and implement painful stimulation of the trigeminal nerve, which can be applied with event-related paradigms by using MRI. Twelve healthy, right-handed volunteers were examined. Painful electrical stimulation of the first trigeminal branch was performed. In an event-related setting with a 1.5 T clinical scanner with EPI capability, the following fMRI parameters were used: 20 slices, 3 mm thickness, isotropic voxel, 306 measurements with 54 randomized events. Statistical postprocessing was performed with SPM99. Activation of the ipsi- and contralateral secondary somatosensory cortex (SII), and the contralateral insular cortex was observed as well as a contralateral thalamic activation (T=4.45, extension 15 voxels). Six of the 12 volunteers revealed also activation of the cingulate cortex. The investigation demonstrates that painful stimulation of the trigeminal nerve activates the contralateral insular cortex, SII, and thalamus, as well as the ipsilateral SII. In contrast to other studies, the cingulate cortex was only activated inconsistently.  相似文献   

20.

Background

It has yet to be determined whether visual-tactile cross-modal plasticity due to visual deprivation, particularly in the primary visual cortex (V1), is solely due to visual deprivation or if it is a result of long-term tactile training. Here we conducted an fMRI study with normally-sighted participants who had undergone long-term training on the tactile shape discrimination of the two dimensional (2D) shapes on Mah-Jong tiles (Mah-Jong experts). Eight Mah-Jong experts and twelve healthy volunteers who were naïve to Mah-Jong performed a tactile shape matching task using Mah-Jong tiles with no visual input. Furthermore, seven out of eight experts performed a tactile shape matching task with unfamiliar 2D Braille characters.

Results

When participants performed tactile discrimination of Mah-Jong tiles, the left lateral occipital cortex (LO) and V1 were activated in the well-trained subjects. In the naïve subjects, the LO was activated but V1 was not activated. Both the LO and V1 of the well-trained subjects were activated during Braille tactile discrimination tasks.

Conclusion

The activation of V1 in subjects trained in tactile discrimination may represent altered cross-modal responses as a result of long-term training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号