首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A problem of equilibrium of a composite plate consisting of a matrix and an elastic inclusion with a through crack along the boundary of this inclusion is studied. The matrix deformation is described by the Timoshenko model, and the elastic inclusion deformation is described by the Kirchhoff-Love model. Conditions of mutual non-penetration of the crack edges are imposed on the curve that describes the crack. Unique solvability of the variational problem is proved. A system of boundary conditions on the curve bounding (in the mid-plane) the elastic inclusion is obtained. A differential formulation of the problem equivalent to the initial variational formulation is given.  相似文献   

2.
The paper concerns an analysis of equilibrium problems for 2D elastic bodies with a thin Timoshenko inclusion crossing an external boundary at zero angle. The inclusion is assumed to be delaminated, thus forming a crack between the inclusion and the body. We consider elastic inclusions as well as rigid inclusions. To prevent a mutual penetration between the crack faces, inequality type boundary conditions are imposed at the crack faces.Theorems of existence and uniqueness are established. Passages to limits are investigated as a rigidity parameter of the elastic inclusion going to infinity.  相似文献   

3.
The two-dimensional problem of a rigid rounded-off angle triangular inclusion partially bonded in an infinite elastic plate is studied. The unbonded part of the inclusion boundary forms an interfacial crack. Based on the complex variable method for curvilinear boundaries, the problem is reduced to a non-homogeneous Hilbert problem and the stress and displacement fields in the plate are obtained in closed form. Special attention is paid in the investigation of the stress field in the vicinity of the crack tip. It is found that the stresses present an oscillatory singularity and the general equations for the local stresses are derived. The singular stress field is coupled with the maximum circumferential stress and the minimum strain energy density criteria to study the fracture characteristics of the composite plate. Results are given for the complex stress intensity factors, the local stresses, the crack extension angles and the critical applied loads for unstable crack growth from its more vulnerable tip or two types of interfacial cracks along the inclusion boundary.  相似文献   

4.
We consider an elastic body with a rigid inclusion and a crack located at the boundary of the inclusion. It is assumed that nonpenetration conditions are imposed at the crack faces which do not allow the opposite crack faces to penetrate each other. We analyze the variational formulation of the problem and provide shape and topology sensitivity analysis of the solution in two and three spatial dimensions. The differentiability of the energy with respect to the crack length, for the crack located at the boundary of rigid inclusion, is established.  相似文献   

5.
Buckling problem of the elastic and viscoelastic rotationally symmetric thick circular plate with a penny-shaped crack is investigated. It is supposed that the crack edges have a small initial rotationally symmetric imperfection. The lateral boundary of the plate is clamped and the clamp compresses this plate circumferentially and inwards by a fixed radial displacement. The investigations are carried out in the framework of the exact geometrically non-linear equations of the theory of viscoelasticity and as a buckling criterion the case for which the initial imperfection of the crack edges start to increase indefinitely is taken. Numerical results are obtained using the Laplace transform and finite element method and are compared with the known ones for elastic composites.  相似文献   

6.
The problem of vibrations of an ice sheet with a rectilinear crack on the surface of an ideal incompressible fluid of finite depth under the action of a time-periodic local load is solved analytically using the Wiener–Hopf technique. Ice cover is simulated by two thin elastic semi-infinite plates of constant thickness. The thickness of the plates may be different on the opposite sides of the crack. Various boundary conditions on the edges of the plates are considered. For the case of contact of plates of the same thickness, a solution in explicit form is obtained. The asymptotics of the deflection of the plates in the far field is studied. It is shown that in the case of contact of two plates of different thickness, predominant directions of wave propagation at an angle to the crack can be identified in the far field. In the case of contact of plates of the same thickness with free edges and with free overlap, an edge waveguide mode propagating along the crack is excited. It is shown that the edge mode propagates with maximum amplitude if the vertical wall is in contact with the plate. Examples of calculations are given.  相似文献   

7.
The paper is concerned with a control of thin rigid inclusion and crack shapes in elastic bodies. It is assumed that rigid inclusions are delaminated; thus, cracks are located on the boundary of inclusions as well as outside of inclusions. We provide the problem formulations and analyze the shape sensitivity with respect to geometrical perturbations in the frame of free boundary models. Inequality type boundary conditions are considered at the crack faces to guarantee a mutual non-penetration between crack faces. Inclusion and crack shapes are considered as control functions. The cost functional, which is based on the Griffith rupture criterion, characterizes the energy release rate and provides the shape sensitivity with respect to a change of the geometry of the structure. We prove an existence of optimal shapes in the problems considered.  相似文献   

8.
The equilibrium problem for an elastic body containing a crack on the interface between two media is considered. It is proved that there exist invariant (independent of the integration surface) integrals in this problem. The existence of invariant integrals is also established in the problem of a contact between an elastic body and a rigid stamp. Nonlinear boundary conditions of mutual non-penetration are prescribed on the contact boundaries. The physical meaning of invariant integrals is established.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 123–137, September–October, 2005.  相似文献   

9.
In this article we study two inverse problems for a thin elastic plate subjected to a given couple field applied at its boundary. One problem consists in determining an unknown portion of the exterior boundary of the plate subjected to homogeneous Neumann conditions, while the other problem concerns with the determination of a rigid inclusion inside the plate. In both cases, under the assumption that the plate is made by isotropic material, we prove uniqueness with one measurement.  相似文献   

10.
IntroductionUptonow ,thetechnicalliteratureonseparatecracks,voids,inclusionsandtheinteractionsbetweencracksandinclusionshavebeenquiteextensive.However,thecontactproblemsofcrack_inclusiondonotseemtobeaswidelystudied .Thispapercanberegardedasthefurtherrese…  相似文献   

11.
A model of a three-dimensional elastic body containing a rigid inclusion and a crack located on the interface between the inclusion and the body is considered. Natural boundary conditions are imposed on the crack. A derivative of the energy functional with respect to the perturbation parameter is derived for an arbitrary, rather smooth perturbation of the domain, in particular, the Griffith formula is obtained.  相似文献   

12.
The problem of the axisymmetric internal indentation of a penny-shaped crack by a rigid circular inclusion is discussed. The paper presents a comparison of analytical and boundary integral equation results for the stress intensity factor at the boundary of the penny-shaped crack indented by a smooth inclusion. Numerical results presented in the paper examines the influence of features such as adhesion at the inclusion-elastic medium interface and finite geometry of the elastic solid containing the penny shaped crack.  相似文献   

13.
In the theory of elastic thin plates, the bending of a rectangular plate on the elastic foundation is also a difficult problem. This paper provides a rigorous solution by the method of superposition. It satisfies the differential equation, the boundary conditions of the edges and the free corners. Thus we are led to a system of infinite simultaneous equations. The problem solved is for a plate with a concentrated load at its center. The reactive forces from the foundation should be made to be in equilibrium with the concentrated force to see whether our calculation is correct or not.  相似文献   

14.
In this paper the problem of an infinite elastic beam or a plate containing a crack is considered. The medium is loaded transversely through a stamp which may be rigid or elastic. The problem is a coupled crack-contact problem which cannot be solved by treating the crack and contact problems separately and by using a superposition technique. First the Green's functions for the general case are obtained. Then the integral equations for a cracked infinite strip loaded by a frictionless stamp are obtained. With the question of fracture in mind, the primary interest in the paper has been in calculating the stress intensity factors. The results are given for a rigid flat stamp with sharp edges and for an elastic curved stamp. The effect of friction at the supports on the stress intensity factors is also studied and a numerical example is given.  相似文献   

15.
W. Mhring 《Wave Motion》1982,4(4):339-347
The elastic wave momentum equation is applied to scattering of dilatational and shear waves by two-dimensional thin objects. It is shown that the sources of wave momentum are located at the edges of these objects. For a stress-zero crack or for a rigid inclusion there are two sources at each edge, for a fluid-filled crack there is just one. The scattered wave is expressed in terms of these sources. This reduces the number of independent variables by a factor two. An application to inverse scattering problems is also given.  相似文献   

16.
A three-dimensional analysis is performed for an infinite transversely isotropic elastic body containing an insulated rigid sheet-like inclusion (an anticrack) in the isotropy plane under a remote perpendicularly uniform heat flow. A general solution scheme is presented for the resulting boundary-value problems. Accurate results are obtained by constructing suitable potential solutions and reducing the thermal problem to a mechanical analog for the corresponding isotropic problem. The governing boundary integral equation for a planar anticrack of arbitrary shape is obtained in terms of a normal stress discontinuity. As an illustration, a complete solution for a rigid circular inclusion is obtained in terms of elementary functions and analyzed. This solution is compared with that corresponding to a penny-shaped crack problem.  相似文献   

17.
This paper describes the dependence of the solution of the equilibrium problem for a Timoshenko plate and the total energy functional of the plate on the perturbation of an oblique crack. The nonlinearity of the problem is caused by the boundary conditions in the form of inequalities (conditions such as the Signorini conditions), which describe mutual nonpenetration of the opposite crack faces. The continuous dependence of the solution of the problem on the perturbation of the crack length is established. A formula for the energy functional derivative of the perturbation of the crack length is obtained.  相似文献   

18.
This paper studies a three-dimensional buckling delamination problem for a rectangular plate made from elastic and viscoelastic composite material. It is assumed that the plate contains a rectangular band-crack (Case 1) and a rectangular edge-crack (Case 2) and that the edge-surfaces of these cracks have an initial infinitesimal imperfection. The evolution of this initial imperfection with an external compressive loading, acting along the crack (for an elastic composite) or with duration of time (for a viscoelastic composite under fixed external loading) is investigated within the framework of three-dimensional geometrically non-linear field equations of the theory of the viscoelasticity for anisotropic bodies. To determine the values of the critical force or critical time as well as the buckling delamination mode, the initial imperfection criterion is used. The corresponding boundary-value problems are solved by employing boundary form perturbation techniques, Laplace transform and FEM (Finite Element Method). The influence of the materials and/or the geometrical parameters of the plate on the critical values are discussed. In particular, it is established that for the considered change range of the problem parameters, the buckling form depends only on the initial infinitesimal imperfection mode of the crack edges.  相似文献   

19.
Delamination of a symmetric circular plate made of viscoelastic composite is studied. It is assumed that the plate has a penny-shaped crack whose edges have a minor axisymmetric imperfection. The lateral surface of the plate is clamped and is compressed by uniform radial normal forces through a rigid body. The studies are made using the exact geometrically nonlinear equations of the theory of viscoelasticity. The delamination criterion is assumed unrestrained growth of the initial imperfection. The Laplace transform and FEM are employed. In particular cases, the results are compared with those for elastic composites  相似文献   

20.
The paper presents the solution of the problem of determining the stress state in an elastic matrix containing a rigid inclusion of the shape of a thin cylindrical shell. It is assumed that harmonic vibrations occur in the matrix under the conditions of axial symmetry (the symmetry axis is the inclusion axis) and the conditions of full adhesion between the inclusion and the matrix are satisfied. The vibrations are caused by the propagation of a plane wave whose front is perpendicular to the inclusion axis. The solution method is based on representing the displacements in the matrix as discontinuous solutions of the equations of axisymmetric oscillations of an elastic medium with unknown stress jumps on the inclusion surface. The realization of the boundary conditions for these jumps leads to a system of integral equations. Its solution is constructed numerically by the mechanical quadrature method with the use of special quadrature formulas for specific integrals. It is numerically investigated how the ratio of the inclusion geometric dimensions and the propagating wave frequency affect the stress concentration near the inclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号