首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthetic polymers which can adsorb bisphenol A (BPA) and related compounds were prepared by a covalent molecular imprinting technique. BPA dimethacrylate, used as template molecule, was polymerized with a crosslinker, triethylene glycol dimethacrylate (TEGDMA) or trimethylol propane trimethacrylate (TRIM). After the polymerization treatment with dilute NaOH was used to cleave BPA from the polymers. For high recovery of BPA with low polymer matrix degradation, the hydrolysis conditions were determined to be treatment with 1.0 mol L–1 NaOH for 48 h. The binding sites generated by the hydrolysis were evaluated by determination of the retentivity of BPA, BPA analogues, and other endocrine disruptors. The polymers strongly adsorbed compounds with two hydroxyl groups at the 4,4-positions. Generally the TEGDMA-based polymers had stronger affinity than the TRIM-based polymers, although the TRIM-based polymer adsorbed steroidal hormones with two hydroxyl groups, for example 17-estradiol and 17-estradiol, more strongly than the TEGDMA-based polymer, meaning that the crosslinkers affected the properties of the binding sites and, depending upon the target molecules, suitable crosslinkers should be chosen in this system.  相似文献   

2.
Bisphenol A (BPA) is a synthetic industrial reactant used in the production of polycarbonate plastics, and genistein is a natural phytoestrogen abundant in the soybean. Current studies investigating the endocrine-disrupting effects of concomitant exposures to BPA and genistein have warranted the development of an analytical method for the simultaneous measurement of BPA and genistein, as well as their primary metabolites, bisphenol A ?-d-glucuronide (BPA gluc) and genistein 4′-?-d-glucuronide (genistein gluc), respectively. All four analytes were extracted from rat plasma via solid phase extraction (SPE). Three SPE cartridges and four elution schemes were tested. Plasma extraction using Bond Elut Plexa cartridges with sequential addition of ethyl acetate, methanol, and acetonitrile yielded optimal average recoveries of 98.1 ± 1.8% BPA, 94.9 ± 8.0% genistein, 91.4 ± 6.1% BPA gluc, and 103 ± 6.1% genistein gluc. Identification and quantification of the four analytes were performed by a validated HPLC-MS/MS method using electrospray ionization and selective reaction monitoring. This novel analytical method should be applicable to the measurement of BPA, genistein, BPA gluc, and genistein gluc in urine, cultures, and tissue following in vivo exposures. While reports of the determination of BPA and genistein independently exist, the simultaneous optimized extraction and detection of BPA, genistein, BPA gluc, and genistein gluc have not previously been reported.  相似文献   

3.
The rapid and simple detection of bisphenol A is very important for the safety and reproduction of organisms. Here, a sensitive and reliable electrochemical sensor was established for bisphenol A detection based on the high amplification effect of copper sulfide-multi-walled carbon nanotube (CuS–MWCNT) nanocomposites. The flower-like CuS–MWCNT were successfully synthesized by a simple hydrothermal method accompanied by polyvinylpyrrolidone (PVP). Compared with bare glassy carbon electrode (GCE), CuS–MWCNT modified GCE could amplify the electrochemical signals in about ten times, which was attributed to the synergistic effect of CuS and MWCNT. The MWCNT could increase the specific surface area of electrodes and improve the electrode activity. The integration of CuS could further enhance the electrode conductivity as well as accelerate the electron transfer rate. Raman spectra and transmission electron microscope (TEM) were used to characterize the successful fabrication of CuS–MWCNT nanocomposites and its uniform and monodispersed morphology. Under optimizing conditions, the oxidation currents of bisphenol A via the differential pulse voltammetric (DPV) showed a good linear relationship with its concentration in a wide range of 0.5–100 μM, with a detection limit of 50 nM. This electrochemical sensor of bisphenol A provided a convenient and economical platform with high sensitivity and reproducibility, which had great potential in environmental monitoring.  相似文献   

4.
An unknown species has been detected in the analysis of the products in a pyrolysis of polycarbonate using Li(+) ion-attachment mass spectrometry (IAMS). The mass spectra exhibited a Li(+) adduct peak at m/z 233 that was tentatively assigned to bisphenol A (BPA) biradical. Experimentally, this assignment was supported by the observation that the production rate increased under an inert nitrogen atmosphere. To further confirm the assignment, the stability of the BPA biradical to intramolecular rearrangement reactions as well as unimolecular decomposition has been analyzed via density functional theory calculations [B3LYP/6-311+G(3df,2p)]. The results show that the bisphenol A biradical is an open-shell biradical singlet that is stable to unimolecular decomposition. Although some of the proposed intramolecular rearrangement products have lower energies than those of the BPA diradical, these pathways have large reaction barriers and the kinetic lifetime of the radical is expected to be of the order of hours under the conditions of the experiment. The calculations also reveal that the bisphenol A diradical has large Li(+) affinities supporting the fact that these Li(+) complexes could be detected in the Li(+) ion attachment mass spectrometry. On the basis of these results the Li(+) adduct peak at m/z 233 detected in the pyrolysis of polycarbonate is assigned to the bisphenol A biradical.  相似文献   

5.
The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-633 K), pressure (4.0-7.0 MPa), reaction time (5-60 min), and toluene to PC weight ratio (3.0-11.0), were investigated, and the reaction products were determined by GC, GC/MS and FT-IR spectrometer. It was found that the main product of the depolymerization reaction was bisphenol A(BPA). BPA accounted for over 55.7% of the depolymerization products at reaction temperature 613 K, pressure 5.0-6.0 MPa, reaction time 15 min and toluene/PC weight ratio of around 7.0.  相似文献   

6.
A new simple and reliable method combining an acetonitrile partitioning extractive procedure followed by dispersive solid-phase cleanup (QuEChERS) with dispersive liquid–liquid microextraction (DLLME) and further gas chromatography mass spectrometry analysis was developed for the simultaneous determination of bisphenol A (BPA) and bisphenol B (BPB) in canned seafood samples. Besides the great enrichment factor provided, the final DLLME extractive step was designed in order to allow the simultaneous acetylation of the compounds required for their gas chromatographic analysis. Tetrachloroethylene was used as extractive solvent, while the acetonitrile extract obtained from QuEChERS was used as dispersive solvent, and anhydride acetic as derivatizing reagent. The main factors influencing QuEChERS and DLLME efficiency including nature of QuEChERS dispersive-SPE sorbents, amount of DLLME extractive and dispersive solvents and nature and amount of derivatizing reagent were evaluated. DLLME procedure provides an effective enrichment of the extract, allowing the required sensitivity even using a single quadropole MS as detector. The optimized method showed to be accurate (>68?% recovery), reproducible (<21?% relative standard deviation) and sensitive for the target analytes (method detection limits of 0.2?μg/kg for BPA and 0.4?μg/kg for BPB). The screening of several canned seafood samples commercialized in Portugal (total?=?47) revealed the presence of BPA in more than 83?% of the samples with levels ranging from 1.0 to 99.9?μg/kg, while BPB was found in only one sample at a level of 21.8?μg/kg.  相似文献   

7.
In the present work, a new method based on a sample treatment by dispersive liquid–liquid microextraction (DLLME) for the extraction of six bisphenols (bisphenol A, bisphenol S, and monochloro-, dichloro-, trichloro-, and tetrachlorobisphenol A), four parabens (methyl-, ethyl-, propyl-, and butylparaben), and six benzophenones (benzophenone-1, benzophenone-2, benzophenone-3, benzophenone-6, benzophenone-8, and 4-hydroxybenzophenone) in human urine samples, followed by ultrahigh-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) analysis, is validated. An enzymatic treatment allows determining the total content of the target EDCs. The extraction parameters were accurately optimized using multivariate optimization strategies. Ethylparaben ring-13C6, benzophenone-d10, and bisphenol A-d16 were used as surrogates. Limits of quantification ranging from 0.1 to 0.6 ng mL?1 and interday variabilities (evaluated as relative standard deviations) from 2.0 to 13.8 % were obtained. The method was validated using matrix-matched standard calibration followed by a recovery assay with spiked samples. Recovery rates ranged from 94 to 106 %. A good linearity, for concentrations up to 300 ng mL?1 for parabens and 40 ng mL?1 for benzophenones and bisphenols, was also obtained. The method was satisfactorily applied for the determination of target compounds in human urine samples from 20 randomly selected individuals.  相似文献   

8.
Surface-imprinted core–shell Au nanoparticles (AuNPs) were explored for the highly selective detection of bisphenol A (BPA) by surface-enhanced Raman scattering (SERS). A triethoxysilane-template complex (BPA-Si) was synthesized and then utilized to fabricate a molecularly imprinted polymer (MIP) layer on the AuNPs via a sol–gel process. The imprinted BPA molecules were removed by a simple thermal treatment to generated the imprint-removed material, MIP-ir-AuNPs, with the desired recognition sites that could selectively rebind the BPA molecules. The morphological and polymeric characteristics of MIP-ir-AuNPs were investigated by transmission electron microscopy and Fourier-transform infrared spectroscopy. The results demonstrated that the MIP-ir-AuNPs were fabricated with a 2 nm MIP shell layer within which abundant amine groups were generated. The rebinding kinetics study showed that the MIP-ir-AuNPs could reach the equilibrium adsorption for BPA within 10 min owning to the advantage of ultrathin core–shell nanostructure. Moreover, a linear relationship between SERS intensity and the concentration of BPA on the MIP-ir-AuNPs was observed in the range of 0.5–22.8 mg L−1, with a detection limit of 0.12 mg L−1 (blank ± 3 × s.d.). When applied to SERS detection, the developed surface-imprinted core–shell MIP-ir-AuNPs could recognize BPA and prevent interference from the structural analogues such as hexafluorobisphenol A (BPAF) and diethylstilbestrol (DES). These results revealed that the proposed method displayed significant potential utility in rapid and selective detection of BPA in real samples.  相似文献   

9.
Co nanoparticles and nitrogen-doped carbon nanotubes (NCNTs)were prepared by calcination of metal-organic material ZIF-67 in a reductive atmosphere of H2 and Ar gas,and modified on the surface of glassy carbon electrod(GCE)for the detection of bisphenol A(BPA). The Co/NCNTs composites exhibited superior electrocatalytic performance for BPA oxidation owing to the synergistic effect between chemical composition and the specific structure of the Co/NCNTs composites. In optimal conditions,Co/NCNTs/GCE exhibited a linear range of 0.01-20 μµmol/L for BPA(R2=0.998). The prepared electrode was employed to detect the content of BPA in real samples with the recoveries of 98.4%-104.6%. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

10.
A novel hybrid process combining β-MnO2 nanowires oxidation and microfiltration was adopted to remove bisphenol A (BPA), an endocrine disrupting chemical (EDC) in the aquatic environment. The β-MnO2 nanowires synthesized via a facile hydrothermal method were characterized by X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscope, and nitrogen sorption. It was demonstrated that β-MnO2 nanowires can degrade BPA effectively. Investigation on operation parameters indicated that oxidation of BPA using β-MnO2 nanowires was evidently dependent on pH, while humic acid and coexisting metal ions such as Ca2+, Mg2+, and Mn2+ induced suppressive effects. After oxidation, a crossflow microfiltration process was conducted to efficiently separate and recover the β-MnO2 nanowires from treated water. Membrane fouling study showed that the as-synthesized β-MnO2 nanowires possess excellent mechanical stability and was able to retain the 1D structure with high aspect ratios after reaction, thus significantly reducing membrane pore blocking in the microfiltration process.  相似文献   

11.
A method termed dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detection (HPLC-VWD) was developed. DLLME-HPLC-VWD is a method for determination of bisphenol A (BPA) in water samples. In this microextraction method, several parameters such as extraction solvent volume, sample volume, disperser solvent, ionic strength, pH, and disperser volume were optimised with the aid of interactive orthogonal array and a mixed level experiment design. First, an orthogonal array design was used to screen the significant variables for the optimisation. Second, the significant factors were optimised by using a mixed level experiment. Under the optimised extraction conditions (extraction solvent: ionic liquid [C6MIM][PF6], 60 µL; dispersive solvent: methanol, 0.4 mL; and pH = 4.0), the performance of the established method was evaluated. The response linearity of the method was observed in a range of 0.002–1.0 mg L?1 (three orders of magnitude) with correlation coefficient (R 2) of 0.9999. The repeatability of this method was 4.2–5.3% for three different BPA levels and the enrichment factors were above 180. The extraction recovery was about 50% for the three different concentrations with 3.4–6.4% of RSD. Limit of detection of the method was 0.40 µg L?1 at a signal-to-noise ratio of 3. In addition, the relative recovery of sample of Songhua River, tap water and barrel-drain water at different spiked concentration levels was ranged 95.8–103.0%, 92.6–98.6% and 87.2–95.3%, respectively. Compared with other extraction technologies, there have been the following advantages of quick, easy operation, and time-saving for the present method.  相似文献   

12.
In this study an on-line column-switching fast LC–MS/MS method was developed to analyze bisphenol A (BPA) and its chlorinated derivatives in water. Fast liquid chromatographic separation was performed on a C18 reversed phase column based on fused-core particle technology (2.7 μm particle size) providing analysis times shorter than 3 min and high peak efficiencies. The main benefit of this LC system is that it can easily be hyphenated to a conventional on-line preconcentration device allowing the direct analysis of water samples without any pretreatment at concentrations levels down to 60 ng L−1 and preventing contaminations frequently reported in the analysis of BPA. This on-line SPE fast LC system was coupled to a triple quadrupole mass spectrometer operating in enhanced mass resolution mode (Q1 FWHM = 0.7 Th, Q3 FWHM = 0.1 Th) in order to minimize interferences and chemical noise. This highly sensitive and selective method was successfully employed to analyze BPA and its chlorinated derivatives in water samples.  相似文献   

13.
A method using on-line solid-phase microextraction (SPME) on a carbowax-templated fiber followed by liquid chromatography (LC) with ultraviolet (UV) detection was developed for the determination of triclosan in environmental water samples. Along with triclosan, other selected phenolic compounds, bisphenol A, and acidic pharmaceuticals were studied. Previous SPME/LC or stir-bar sorptive extraction/LC-UV for polar analytes showed lack of sensitivity. In this study, the calculated octanol–water distribution coefficient (log D) values of the target analytes at different pH values were used to estimate polarity of the analytes. The lack of sensitivity observed in earlier studies is identified as a lack of desorption by strong polar–polar interactions between analyte and solid-phase. Calculated log D values were useful to understand or predict the interaction between analyte and solid phase. Under the optimized conditions, the method detection limit of selected analytes by using on-line SPME-LC-UV method ranged from 5 to 33 ng?L?1, except for very polar 3-chlorophenol and 2,4-dichlorophenol which was obscured in wastewater samples by an interfering substance. This level of detection represented a remarkable improvement over the conventional existing methods. The on-line SPME-LC-UV method, which did not require derivatization of analytes, was applied to the determination of TCS including phenolic compounds and acidic pharmaceuticals in tap water and river water and municipal wastewater samples.
Figure
Schematic diagram of the On-line solid-phase microextraction  相似文献   

14.
The reactivity of the flame retardant and its decomposition temperature control the condensed-phase action in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene/polytetrafluoroethylene (PC/ABSPTFE) blends. Thus, to increase charring in the condensed phase of PC/ABSPTFE + aryl phosphate, two halogen-free flame retardants were synthesized: 3,3,5-trimethylcyclohexylbisphenol bis(diphenyl phosphate) (TMC-BDP) and bisphenol A bis(diethyl phosphate) (BEP). Their performance is compared to bisphenol A bis(diphenyl phosphate) (BDP) in PC/ABSPTFE blend. The comprehensive study was carried out using thermogravimetry (TG); TG coupled with Fourier transform infrared spectrometer (TG-FTIR); the Underwriters Laboratory burning chamber (UL 94); limiting oxygen index (LOI); cone calorimeter at different irradiations; tensile, bending and heat distortion temperature tests; as well as rheological studies and differential scanning calorimeter (DSC). With respect to pyrolysis, TMC-BDP works as well as BDP in the PC/ABSPTFE blend by enhancing the cross-linking of PC, whereas BEP shows worse performance because it prefers cross-linking with itself rather than with PC. As to its fire behavior, PC/ABSPTFE + TMC-BDP presents results very similar to PC/ABSPTFE + BDP; the blend PC/ABSPTFE + BEP shows lower flame inhibition and higher total heat evolved (THE). The UL 94 for the materials with TMC-BDP and BDP improved from HB to V0 for specimens of 3.2 mm thickness compared to PC/ABSPTFE and PC/ABSPTFE + BEP; the LOI increased from around 24% up to around 28%, respectively. BEP works as the strongest plasticizer in PC/ABSPTFE, whereas the blends with TMC-BDP and BDP present the same rheological properties. PC/ABSPTFE + TMC-BDP exhibits the best mechanical properties among all flame-retarded blends.  相似文献   

15.
Using triacontyl bonded silica (C30) as on-line solid-phase extraction (SPE) material and a specially designed on-line analytical system which allowed large sample volume injection, a high speed and robust on-line SPE-HPLC–MS method was established for the analysis of five estrogens and bisphenol A (BPA) in milk samples. The milk sample is pretreated with acetonitrile for protein precipitation and then treated with primary secondary amine for the removal of polar impurities in the matrix. Then the pretreated sample can be automatically loaded by a LC pump. For effective extraction, an offshoot with NH4Ac solution of high-flow rate was employed to dilute the loaded sample by a mixing tee before sample was loaded onto the C30 extraction column. In this way, large volume injection (1 mL in this experiment) could be achieved. Some important parameters such as sample loading flow rate, sample dilution ratio and injection volume were optimized. Under the optimized conditions, the recoveries for all analytes range from 71.4 to 97.1% and reproducibility represented as RSDs are less than 15.0% (n = 5) with milk samples spiked at 0.6 and 15 ng/mL of each analyte. To the authors’ knowledge, it constitutes the first work describing a C30 on-line SPE-LC–MS analytical method for the screen and monitoring of these estrogens and BPA in milk.  相似文献   

16.
17.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA) in water samples. An appropriate mixture of acetone (disperser solvent) and chloroform (extraction solvent) was injected rapidly into a water sample containing BPA. After extraction, sedimented phase was analyzed by HPLC-UV. Under the optimum conditions (extractant solvent: 142 μL of chloroform, disperser solvent: 2.0 mL of acetone, and without salt addition), the calibration graph was linear in the range of 0.5–100 μg L−1 with the detection limit of 0.07 μg L−1 for BPA. The relative standard deviation (RSD, n = 5) for the extraction and determination of 100 μg L−1 of BPA in the aqueous samples was 6.0%. The results showed that DLLME is a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.  相似文献   

18.
In this work thermal decomposition of ethoxylated 2,2-bis-(4-hydroxyphenyl)propane (BPA) and oxyalkylenated 2,6-toluyldiamine (TDA)-based rigid polyurethane (PU) foam, blown with pentane, is described. Thermogravimetry coupled with mass spectrometry (TG–MS) and thermogravimetry coupled with Fourier transform infrared spectroscopy (TG–FTIR) results of the evolution of volatile products during the degradation and gas chromatography coupled with mass spectrometry analysis of condensed products of PU foam pyrolysis (Py/GC–MS) are presented. Four temperature ranges of volatile products emission were detected under inert atmosphere—pentane used as blowing agent volatilizes in first range, the second one is dominated by dissociation reaction of urethane bonds by which first order amines, CO2 and vinyl bonds, are formed, while complex reactions with formation of secondary amine and CO2 occur in the third stage. Fourth stage is visible by further CO2 evolution. Ethylene oxide and derivatives of dioxane, formed due to the presence of oxyalkylene chains, act as fuel during the burning of PU foam.  相似文献   

19.
Urinary concentrations of phenols or their metabolites have been used as biomarkers to assess the prevalence of exposure to these compounds in the general population. Total urinary concentrations, which include both free and conjugated (glucuronide and sulfated) forms of the compounds, are usually reported. From a toxicologic standpoint, the relative concentrations of the free species compared with their conjugated analogs can be important because conjugation may reduce the potential biologic activity of the phenols. In this study, we determined the percentage of glucuronide and sulfate conjugates of three phenolic compounds, bisphenol A (BPA), 2,5-dichlorophenol (2,5-DCP), and 2-hydroxy-4-methoxybenzophenone (benzophenone-3, BP-3) in 30 urine samples collected between 2000 and 2004 from a demographically diverse group of anonymous adult volunteers. We used a sensitive on-line solid phase extraction–isotope dilution–high performance liquid chromatography–tandem mass spectrometry method. These three phenols were detected frequently in the urine samples tested. Only small percentages of the compounds (9.5% for BPA, and 3% for 2,5-DCP and BP-3) were excreted in their free form. The percentage of the sulfate conjugate was about twice that of the free compound. The glucuronide conjugate was the major metabolite, representing 69.5% (BPA), 89% (2,5-DCP), and 84.6% (BP-3) of the total amount excreted in urine. These results are in agreement with those reported before which suggested that BPA-glucuronide was an important BPA urinary metabolite in humans. To our knowledge, this is the first study describing the distribution of urinary conjugates of BP-3 and 2,5-DCP in humans.  相似文献   

20.
Nanosecond laser flash photolysis and time-resolved fluorescence were used to study photochemistry of bis(4-hydroxyphenyl)ethane (Bisphenol E, BPE) and complex of BPE with β-cyclodextrin (BPE-CD) in aqueous solutions. For both systems the primary photochemical process was found to be photoionization with the formation of a hydrated electron—phenoxyl radical pair. Inclusion of BPE in cyclodextrin cavity leads to the increase of photoionization and fluorescence quantum yield (from 0.009 to 0.16) as well as fluorescence lifetime (from 0.07 to 2.5 ns) due to decreasing of the quenching rate of the singlet excited state of complexed BPE by solvent molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号