The development of the preparation strategy for high-quality and large-size graphene via eco-friendly routes is still a challenging issue. Herein, we have successfully developed a novel route to chemically exfoliate natural graphite into high-quality and large-size graphene in a binary-peroxidant system. This system is composed of urea peroxide (CO(NH2)2⋅H2O2) and hydrogen peroxide (H2O2), where CO(NH2)2⋅H2O2 is used in preparing graphene for the first time. Benefiting from the complete decomposition of CO(NH2)2⋅H2O2 and H2O2 into gaseous species under microwave (MW) irradiation, no water-washing and effluent-treatment are needed in this chemical exfoliation procedure, thus the preparation of graphene in an eco-friendly way is realized. The resultant graphene behaves a large-size, high-quality and few-layer feature with a yield of ~100%. Then 4 µm-thick ultrathin graphene paper fabricated from the as-exfoliated graphene is used as an electromagnetic interference (EMI) shielding material. And its absolute effectiveness of EMI shielding (SSE/t) is up to 34,176.9 dB cm2/g, which is, to the best of our knowledge, among the highest values so far reported for typical EMI shielding materials. The EMI shielding performance demonstrates a great application potential of graphene paper in meeting the ever-increasingly EMI shielding demands in miniaturized electronic devices. 相似文献
Bulk quantities of graphene nanosheets and nanodots have been selectively fabricated by mechanical grinding exfoliation of natural graphite in a small quantity of ionic liquids. The resulting graphene sheets and dots are solvent free with low levels of naturally absorbed oxygen, inherited from the starting graphite. The sheets are only two to five layers thick. The graphene nanodots have diameters in the range of 9-29 nm and heights in the range of 1-16 nm, which can be controlled by changing the processing time. 相似文献
Graphene 3D materials GM1 and GM2 obtained by explosive exfoliation of graphite oxide and graphite intercalated with chlorine trifluoride, respectively, have been studied by elemental analysis, X-ray photoelectron spectroscopy, mass spectrometry, infrared and Raman spectroscopy, and scanning electron microscopy. The specific surface area, the pore size, and electrical conductivity of the materials have been measured. A comparative study has shown that the gas mixture produced during the preparation of GM1 is less hazardous than that in the case of GM2. However, GM2 exhibits a higher conductivity and a larger size of graphene crystallites. The feasibility of isolation of a suspension of graphene nanosheets from the test 3D materials has been demonstrated. Possible applications of these materials are discussed. 相似文献
A new oxynitride Ruddlesden-Popper phase K1.6Ca2Nb3O9.4N0.6.1.1H2O was synthesized by the topochemical ammonolysis reaction at 700 °C from the oxide Dion-Jacobson phase KCa2Nb3O10 in the presence of K2CO3. The oxynitride showed good stability with a little loss of nitrogen, even after a few months of exposure to air. Its crystal structure was solved by Rietveld refinement of X-ray powder diffraction data in space group P4/mmm and considering a two-phase mixture, due to the difference in the degree of hydration, with a = 3.894(2) Å and c = 17.90(8) Å for the most hydrated phase and a = 3.927(6) Å and c = 17.09(2) Å for the less one. Optical band gaps were measured by diffuse reflectance in the UV-Visible range indicating a red shift of Eg to the visible region. The oxynitride layered perovskite was then protonated and exfoliated into nanosheets. TEM images and SAED patterns of the nanosheets proved that exfoliation was successful, showing lattice parameters quite compatible with the Rietveld refinement. 相似文献
Free energies for graphene exfoliation from bilayer graphene using ionic liquids based on various cations paired with the bis(trifluoromethylsulfonyl)imide anion were determined from adaptive bias force-molecular dynamics (ABF-MD) simulation and fall in excellent qualitative agreement with experiment. This method has notable potential as an a priori screening tool for performance based rank order prediction of novel ionic liquids for the dispersion and exfoliation of various nanocarbons and inorganic graphene analogues. 相似文献
The production of clean and renewable hydrogen through water splitting using photocatalysts has received much attention due to the increasing global energy crises. In this study, a high efficiency of the photocatalytic H(2) production was achieved using graphene nanosheets decorated with CdS clusters as visible-light-driven photocatalysts. The materials were prepared by a solvothermal method in which graphene oxide (GO) served as the support and cadmium acetate (Cd(Ac)(2)) as the CdS precursor. These nanosized composites reach a high H(2)-production rate of 1.12 mmol h(-1) (about 4.87 times higher than that of pure CdS nanoparticles) at graphene content of 1.0 wt % and Pt 0.5 wt % under visible-light irradiation and an apparent quantum efficiency (QE) of 22.5% at wavelength of 420 nm. This high photocatalytic H(2)-production activity is attributed predominantly to the presence of graphene, which serves as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carriers from CdS nanoparticles. This work highlights the potential application of graphene-based materials in the field of energy conversion. 相似文献
Hydrogen-bonded organic frameworks (HOFs) are a diverse and tunable class of materials, but their potential as free-standing two-dimensional nanomaterials has yet to be explored. Here we report the self-assembly of two layered hydrogen-bonded frameworks based on strong, charge-assisted hydrogen-bonding between carboxylate and amidinium groups. Ultrasound-assisted liquid exfoliation of both materials readily produces monolayer hydrogen-bonded organic nanosheets (HONs) with micron-sized lateral dimensions. The HONs show remarkable stability and maintain their extended crystallinity and monolayer structures even after being suspended in water at 80 °C for three days. These systems also exhibit efficient fluorescence quenching of an organic dye in organic solvents, superior to the quenching ability of the bulk frameworks. We anticipate that this approach will provide a route towards a diverse new family of molecular two-dimensional materials.We report the liquid-phase ultrasonic exfoliation of two layered hydrogen-bonded frameworks into monolayer, micron-sized, and water-stable nanosheets (HONs) connected purely by hydrogen-bonding interactions.相似文献
Graphene oxide nanosheets (GONSs)/cyanate ester (CE) resin composites were prepared via a solution intercalation method. The structures of the GONSs and the composites were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The mechanical and tribological properties of the composites were investigated. In addition, the thermal behavior of the composites was characterized by thermogravimetric analysis (TGA). Results show that the GONSs/CE resin composites were successfully prepared. The addition of GONSs is beneficial to improve the mechanical and tribological properties of the composites. Moreover, the composites exhibit better thermal stability in comparison with the CE resin matrix. 相似文献
N-doped graphene has been extensively explored because of their intriguing properties. However, most of the conventional heat-processed N-doped graphene (HNG) suffer from the poor hydrophilic property and low electric conductivity when using electrode materials. Herein, we present a facile solution-processed strategy to fabricate N-doped graphene through electrochemical exfoliation of graphite in inorganic electrolyte solution. The resulting electrochemically exfoliated N-doped graphene (ENG) has high level of nitrogen (7.9 at.%) and oxygen (16.5 at.%), moreover, excellent electric conductivity (19 s cm?1). As a binder-free electrode material for oxygen reduction reaction (ORR), ENG exhibits much better electroactivity than HNG and electrochemically exfoliated graphene (EG), moreover, much better methanol tolerance and long-term durability than that commercial Pt/C catalyst. The results provide new sights into scalable production of noble metal-free catalyst towards ORR. 相似文献
Graphite is exfoliated into graphene by shearing vortex fluidic films of N-methyl-pyrrolidone (NMP), as a controlled process for preparing oxide free graphene, and for exfoliating the corresponding boron nitride sheets. 相似文献
Journal of Solid State Electrochemistry - Among all the preparation methods, electrochemical exfoliation of graphite in neutral aqueous solution to prepare high-quality graphene is a hot research... 相似文献
A new conductive terpolymer/graphene nanosheet hybrid composite has been synthesized by polymerizing pyrrole, chlorobenzaldehyde, and heptaldehyde (PPyCB&;H), in the presence of graphene nanosheets (GNS), using p-toluene sulfonic acid as a catalyst. Fourier transform infrared spectra, proton nuclear magnetic resonance, transmission electron microscopy, and X-ray diffraction patterns confirm the formation of PPyCB&;H/GNS hybrid nanocomposites. Further, the resultant nanocomposite material is coated on ITO to construct an electrochemical sensor for the reliable detection of single-strand DNA (tDNA) which is cleaved from the genomic DNA of Escherichia coli. Under optimized conditions, linear detection of genomic DNA (tDNA) with concentration ranging from 1.3 × 10−12 to 1.3 × 10−23 M is observed and it is repeatable with a 1.3 × 10−23 M lowest level detection limit. The present modified electrode of PPyCB&;H/GNS may show utility for constructing highly sensitive electrochemical sensors for the detection of E. coli.
Production of hydrogen (H2) and oxygen (O2) through electrocatalytic water splitting is one of the sustainable,green and pivotal ways to accomplish the ever-inc... 相似文献
Covalent derivatization of the acidic functional groups in oxidized graphite with octadecylamine renders graphite soluble in common organic solvents. Atomic force microscopic characterization of the soluble species supports the idea that the solutions consist of single and few layer graphene sheets, and we report the first solution properties of graphite. 相似文献
A universal simplified strategy was developed to fabricate all-solid-state planar micro-supercapacitors with high areal capacitance (~355 mF/cm2), based on interdigital patterned films of 2D pseudocapacitive MnO2 nanosheets and electrochemically exfoliated graphene. 相似文献
Reaction of formaldehyde with amino acids followed by oxidation with hydrogen peroxide to produce a fluorophore Norharman product is well known and was used for the spectrofluorimetric determination of l-tryptophan (Trp). This study aimed to use graphene oxide (GO) to enhance the selectivity and sensitivity of Trp in presence of other amino acids and possible interfering compounds. Different parameters such as pH, temperature, incubation time, and concentrations of formaldehyde, H2O2 and GO were studied to optimize the condition of determination. Experimental data showed that the maximum fluorescence intensity was achieved in pH 7.0–9.0 phosphate buffer mixed with 7–10% (v/v) formaldehyde and 1–2% (v/v) H2O2 as oxidizing agent at 60 ?C for 1 h. On the basis of calibration curve of various concentrations of Trp in the presence of 20 μg mL−1 GO, the lower limit of detection (LOD) of Trp was determined as 0.092 nmol mL−1 and the lower limit of quantification (LOQ) was 0.3 nmol mL−1. The selectivity of Trp in presence of other amino acids and possible interfering compounds were studied with and without GO. The data obtained after inner filter effect corrections revealed that the selectivity of Trp in presence of amino acids and other possible interfering agents was improved in the range of 76–96%, compared with that in absence of GO. The enhancement of selectivity in the presence of GO indicates that the Trp and other amino acid and possible interfering compounds were adsorbed by GO, and the selective uptaking of Trp-by the reaction with formaldehyde followed by oxidation with H2O2 at 60 ?C with high selectivity and sensitivity was achieved successfully. 相似文献
The reaction of Na/K-reduced graphite with hexyliodide represents a new, versatile and mild approach to synthesize alkylated graphene derivatives, which were characterized by a combination of Raman spectroscopy, TEM and TGA/MS analysis. 相似文献