首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of nonequilibrium phase transitions on the vibrations of a vapor bubble in a liquid caused by a suddenly applied pressure drop is considered. This problem is of interest in the study of mixed liquid and vapor flows with a discrete vapor phase. Results are presented of a numerical solution of this problem in the form of dimensionless radius-time curves for various values of the parameter which characterizes the kinetics of the phase transitions. The case of equilibrium phase transitions has been considered in [1, 2]. The thermal and dynamic interactions of a gaseous bubble with the surrounding fluid are the subject of [3, 4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 50–54, November–December, 1973.The author thanks R. I. Nigmatulin for advice and interest in this work and V. Sh. Shagapov for useful discussions.  相似文献   

2.
A calculation model was developed, and the heat– and mass–transfer characteristics in a laminar air—vapor—droplet flow moving in a round tube were studied numerically. The distributions of parameters of the two–phase flow over the tube radius were obtained for varied initial concentrations of the gas phase. The calculated heat and mass transfer is compared to experimental data and calculations of other authors. It is shown that evaporation of droplets in a vapor—gas flow leads to a more intense heat release as compared to a one–species vapor—droplet flow and one–phase vapor flow  相似文献   

3.
The paper presents an investigation of Euler–Lagrangian methods for cavitating two-phase flows. The Euler–Euler methods, widely used for simulations of cavitating flows in ship technology, perform well in regions of moderate flow changes but fail in zones of strong, vortical flow. Reasons are the strong approximations of cavitation models in the Euler concept. Alternatively, Euler–Lagrangian concepts enable more detailed formulations for transport, dynamics and acoustic of discrete vapor bubbles. Test calculations are performed to study the influence of different parameters in the equations of motion and in the Rayleigh–Plesset equation for bubble dynamics. Results confirm that only Lagrangian models are able to describe correctly the bubble behavior in vortices, while Eulerian results deviate strongly. Lagrangian formulations enable additionally the determination of acoustic pressure of cavitation noise. Two-way coupling between the phases is required for large regions of the vapor phase. A new coupling concept between continuous fluid flow and discrete bubble phase is developed and demonstrated for flow through a nozzle. However, the iterative coupling between the phases via volume fractions is computationally expensive and should therefore be applied only in regions where Eulerian treatment fails. A corresponding local concept for combination with an Euler–Euler method is outlined and is in progress.  相似文献   

4.
Nonisothermal Couette flow has been studied in a number of papers [1–11] for various laws of the temperature dependence of viscosity. In [1] the viscosity of the medium was assumed constant; in [2–5] a hyperbolic law of variation of viscosity with temperature was used; in [6–8] the Reynolds relation was assumed; in [9] the investigation was performed for an arbitrary temperature dependence of viscosity. Flows of media with an exponential temperature dependence of viscosity are characterized by large temperature gradients in the flow. This permits the treatment of the temperature variation in the flow of the fluid as a hydrodynamic thermal explosion [8, 10, 11]. The conditions of the formulation of the problem of the articles mentioned were limited by the possibility of obtaining an analytic solution. In the present article we consider nonisothermal Couette flows of a non-Newtonian fluid under the action of a pressure gradient along the plates. The equations for this case do not have an analytic solution. Methods developed in [12–14] for the qualitative study of differential equations in three-dimensional phase spaces were used in the analysis. The calculations were performed by computer.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 26–30, May–June, 1981.  相似文献   

5.
It is shown that at large vapor contents, as a result of the combined action of phase transitions and capillary effects, the small radially symmetric oscillations of gas-vapor bubbles in an acoustic field are unstable in amplitude. The critical vapor concentration in the bubble separating regions of qualitatively different bubble behavior in the acoustic field is determined. Expressions are obtained for the decay rate of the radial oscillations of the gas-vapor bubble and the growth rate characterizing the rate of increase of oscillation amplitude in the region of instability. It is shown that adding only a slight amount of gas to the vapor bubble leads to a marked decrease in the growth rate. It is found that in the particular case of a vapor bubble the tine growth rate characterizing the development of the instability is of the same order as the second resonance frequency of the vapor bubble. This may serve to explain why in the case of vapor bubble oscillations the second resonance effect, which has been established in a number of theoretical studies and is widely discussed in the literature, has not yet been experimentally confirmed. The problem of spherically symmetrical processes around gasvapor bubbles was posed in [1], and their small oscillations are investigated in detail in [2–4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 79–33, May–June, 1986.The authors are grateful to R. I. Nigmatulin for useful discussions.  相似文献   

6.
The problem of the mass, thermal and dynamic interaction between a bubble containing a soluble gas and a liquid is considered. It is shown that this problem can be reduced to the problem of the behavior of a vapor bubble with phase transitions investigated in detail in [1–3]. Expressions are obtained for the rate of decay of the radially symmetric oscillations of the bubbles due to the solubility of the gas in the liquid. The effective coefficients of mass transfer between the radially pulsating bubbles and the liquid are determined. A numerical solution is obtained for the problem of the radial motion of a bubble created by a sudden change of pressure in the liquid which, in particular, corresponds to the behavior of the bubbles behind the shock front when a shock wave enters a bubble screen.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 52–59, November–December, 1985.  相似文献   

7.
The Monte Carlo method has been used to obtain a numerical solution to the problem of strong evaporation of a monatomic gas in which the molecules are modeled by pseudo-Maxwellian and hard spheres. A comparison with the results of other authors is made. The results agree well with the solution of the problem obtained on the basis of the model Bhatnagar—Gross—Krook kinetic equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 185–188, January–February, 1984.I should like to thank M. N. Kogan for discussing the results.  相似文献   

8.
Using the basic equations of hydromechanics and also the Lagrange equations of the second kind, expressions are derived for the force acting between a liquid and a vapor bubble growing within it. Cases studied include those of the growth of a bubble on a thin filament or plane surface in an ideal liquid and a liquid of low viscosity. The sign of the hydrodynamic forces depends on the particular law of growth of the vapor bubble.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 165–170, May–June, 1973.  相似文献   

9.
Zonenko  S. I. 《Fluid Dynamics》1985,20(4):627-630
A study is made of the radial motion of a vapor envelope surrounding an isolated spherical particle in an unbounded mass of liquid. It is assumed that the liquid is viscous and incompressible and that the temperature is distributed uniformly in the solid particle. A model of a calorifically perfect gas is used for the vapor phase. The same assumptions are made as in Rayleigh's formulation for the problem of the dynamics of a single bubble: that the process is spherically symmetric and that the pressure P2 (t) in the vapor phase is homogeneous. The justification for making these assumptions in problems of the dynamics of gas, vapor, and vaporgas bubbles is discussed in [1–5]. In this paper, the collapse of the vapor layer and the boiling of the liquid on the surface of the heated particle are not considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 154–157, July–August, 1985.  相似文献   

10.
A solution is presented to the problem of the laminar flow of a heat-transfer vapor in an annular channel of constant cross section in the presence of a liquid film on the outer wall and heating through the inner wall of the channel. The results of test calculations for water vapor are given. The obtained results are analyzed, and it is shown that they make it possible to establish a number of characteristic features of the process, in particular, the possible existence of a self-similar solution.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 143–146, May–June, 1981.  相似文献   

11.
Results of the numerical solution of the boundary–value problem of radiative—conductive heat transfer in a layer of Plexiglas are presented. The temperature fields in aircraft–cabin glazing are calculated.  相似文献   

12.
Problems of the vibration of bodies in confined viscous fluids have been solved to determine the added masses and damping coefficients of rods [1–3] and floats [4–5]. The solutions of these problems, based on the use of simplifications of the boundary-layer method [4–6], are obtained analytically in general form and are in good agreement with the experimental data. However, in each specific case the possibility of using such solutions for given values of the fluid viscosity and vibration frequency must be justified either experimentally [2, 4, 5] or theoretically as, for example, in [1], where an analytic solution was obtained for concentric cylinders. The present paper offers a general solution of the problem of the small vibrations of a sphere in a spherical volume of fluid valid over a broad range of variation of the dimensionless kinematic viscosity. The limiting cases of this solution for both high and low viscosity are considered. The asymptotic expressions obtained are compared with calculations based on the analytic solution.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 29–34, March–April, 1986.  相似文献   

13.
Waves mentioned in the title were revealed in composite materials that are described by the microstructural theory of the second order — the theory of two-phase mixtures. For harmonic periodic waves, a mixture is always a dispersive medium. This medium admits existence of other waves — waves with profiles described by functions of mathematical physics (the Chebyshov–Hermite, Whittaker, Mathieu, and Lamé functions). If the initial profile of a plane wave is chosen in the form of the Chebyshev–Hermite or Whittaker function, then the wave may be regarded as an aperiodic solitary wave. The dispersivity of a mixture as a nonlinear frequency dependence of phase velocities transforms for nonperiodic solitary waves into a nonlinear phase-dependence of wave velocities. This and some other properties of such waves permit us to state that these waves fall into a new class of waves in materials, which is intermediate between the classical simple waves and the classical dispersion traveling waves. The existence of these new waves is proved in a computer analysis of phase-velocity-versus-phase plots. One of the main results of the interaction study is proof of the existence of this interaction itself. Some features of the wave interaction — triplets and the concept of synchronization — are commented on  相似文献   

14.
A method of solving the problem of the translational motion of a cylinder of given shape below the free surface of an infinitely deep heavy fluid is developed. As distinct from existing techniques, the method permits the obtaining of a solution which becomes exact as the Froude number increases without bound. The solution of the problem of the motion of a circular cylinder is considered in detail. Suggestions are made concerning the characteristic properties of an exact solution of the general problem.Kazan'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 9–22, November–December, 1996.  相似文献   

15.
The problem of constructing an optimal-profile nozzle for a two-phase medium is considered in the one-dimensional approximation. A problem of this type to find an optimal-thrust nozzle was considered by Kraiko, Starkov, and Sternin [1]. In contrast to their study, a more complete model of the two-phase medium is used in the present paper, and the nozzles are optimized with respect to the efficiency, gas velocity, and velocity of the suspended particles. The problem is solved using the formalism of optimal control theory [2, 3]. The change in the vapor concentration and phase transitions are taken into account. A method of numerical solution of the problem is proposed. It has been realized on a computer. The method can be used to solve similar problems for a more complicated model of the two-phase medium.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 52–58, January–February, 1982.  相似文献   

16.
In this article the boundary conditions relating the values of the hydrodynamic variables in a rarefaction wave to the surface temperature are derived. The gas-kinetic problem of the motion of vapor in a thin layer directly adjacent to a phase boundary is solved approximately for this case. If the temperature of the surface is held constant by external radiation, the resulting solution makes it possible to compute the surface temperature, the velocity of the evaporation front, and the recoil momentum.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 163–165, May–June, 1976.In conclusion, the author thanks S. I. Anisimov for useful discussions.  相似文献   

17.
Problems of compression of a plate on a wedge–shaped target by a strong shock wave and plate acceleration are studied using the equations of dissipationless hydrodynamics of compressible media. The state of an aluminum plate accelerated or compressed by an aluminum impactor with a velocity of 5—15 km/sec is studied numerically. For a compression regime in which a shaped–charge jet forms, critical values of the wedge angle are obtained beginning with which the shaped–charge jet is in the liquid or solid state and does not contain the boiling liquid. For the jetless regime of shock–wave compression, an approximate solution with an attached shock wave is constructed that takes into account the phase composition of the plate material in the rarefaction wave. The constructed solution is compared with the solution of the original problem. The temperature behind the front of the attached shock wave was found to be considerably (severalfold) higher than the temperature behind the front of the compression wave. The fundamental possibility of initiating a thermonuclear reaction is shown for jetless compression of a plate of deuterium ice by a strong shock wave.  相似文献   

18.
The nonlinear problem of thermal, mass, and dynamic interaction between a vapor-gas bubble and a liquid is considered. The results of numerical solution of the problem of radial motion of the bubble caused by a sudden pressure change in the liquid, illustrating the behavior of vapor-gas bubbles in compression and rarefaction waves, are presented. The corresponding problem for single-component gas and vapor bubbles was considered in [1, 2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 56–61, November–December. 1976.  相似文献   

19.
A study is made of the part played by the Knudsen layer in the problem of weak unsteady evaporation of a spherical droplet in its own vapor. It is shown that use of the classical Hertz—Knudsen formula may lead to appreciable errors, in particular, in the determination of the time required by the droplet temperature to relax to the state corresponding to steady evaporation.Translated from Izvestiya Akademii Nauk SSSR; Mekhanika Zhidkosti i Gaza, No. 1, pp. 127–131, January–February, 1984.  相似文献   

20.
We present a modelization of the heat and mass transfers within a porous medium, which takes into account phase transitions. Classical equations are derived for the mass conservation equation, whereas the equation of energy relies on an entropy balance adapted to the case of a rigid porous medium. The approximation of the solution is obtained using a finite volume scheme coupled with the management of phase transitions. This model is shown to apply in the case of an experiment of heat generation in a porous medium. The vapor phase appearance is well reproduced by the simulations, and the size of the two-phase region is correctly predicted. A result of this study is the evidence of the discrepancy between the air – water capillary and relative permeability curves and water – water vapor ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号