首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The coproporphyrin-I (CPI) behaves as a reducing agent for silver and gold metal ions and as stabilizing agent for the formed colloidal metallic nanoparticles. The peculiarity of silver and gold nanoparticles obtained in the reactions of monomeric form of CPI with their metal ions has been studied. The optical properties of the colloidal forms of these metals have been investigated by UV–Vis spectrophotometry, and their morphology by TEM and SEM measurements. The structures and the size distributions of Ag and Au particles have been characterized and determined by computerized TEM images.  相似文献   

2.
Cell-associated gold nanoparticles and nanoplates were produced when varying number of Yarrowia lipolytica cells were incubated with different concentrations of chloroauric acid (HAuCl4) at pH 4.5. With 109 cells ml−1 and 0.5 or 1.0 mM of the gold salt, the reaction mixtures developed a purple or golden red colour, respectively, and gold nanoparticles were synthesized. Nanoparticles of varying sizes were produced when 1010 cells ml−1 were incubated with 0.5, 1.0 or 2.0 mM chloroauric acid salt. With 3.0, 4.0 or 5.0 mM HAuCl4, nanoplates were also observed. With 1011 cells ml−1 nanoparticles were synthesized with almost all the gold salt concentrations. The cell-associated particles were released outside when nanoparticle-loaded cells were incubated at low temperature (20 °C) for 48 h. With increasing salt concentrations and a fixed number of cells, the size of the nanoparticles progressively increased. On the other hand, with increasing cell numbers and a constant gold salt concentration, the size of nanoparticles decreased. These results indicate that by varying the number of cells and the gold salt concentration, a variety of nanoparticles and nanoplates can be synthesized. Fourier transform infrared (FTIR) spectroscopy revealed the possible involvement of carboxyl, hydroxyl and amide groups on the cell surfaces in nanoparticle synthesis.  相似文献   

3.
Gold nanoparticles (GNPs) have been synthesized through the citrate reduction method; the citrate/gold(III) ratio was changed from 1:1 up to 10:1 and the size of the resulting nanoparticles was measured by sedimentation field-flow fractionation (SdFFF). Experimental data showed that the GNPs size decreases in the ratio range 1:1–3:1 and then increases from 5:1 to 10:1 passing through a plateau region in between, and is almost independent of the precursor solution concentrations. In the zone of minimum diameters the synthetic process does not produce monodispersed GNPs but often multiple distributions, very close in size, are observed as evidenced by the particle size distributions (PSDs) derived from the SdFFF fractograms. UV–vis spectrophotometry, being the most common technique employed in the optical characterization of nanoparticles suspensions, was used throughout this work. A confirmation of the nucleation–aggregation–fragmentation mechanism was inferred from the cross-correlation between UV–vis and SdFFF results.  相似文献   

4.
2,3,5,6-Tetrakis-(morpholinomethyl)hydroquinone (1) is used for the first time in the preparation of gold nanoparticles by the reduction of HAuCl4 in water–methanol medium without using any capping agent. Compound 1 was prepared by Mannich-type aminomethylation of hydroquinone with morpholine. It is characterized by elemental analysis, FT-IR, UV–Vis and mass spectra and finally by single crystal X-ray diffraction. The ratio of HAuCl4 and compound 1 played a vital role in controlling the shape and size of gold nanoparticles. The samples were characterized by Transmission Electron Microscopy (TEM), XRD, FT-IR, UV–Vis measurements. With the increasing amount of gold(III) solution with respect to compound 1, two different morphologies such as self-assembled and spherical gold nanoparticles have been observed. The results indicate that the morphology of gold nanoparticles with different sizes can be controlled by changing the concentrations of compound 1 and gold(III) solution.  相似文献   

5.
A new competitive-type immunosensing system based on gold nanoparticles toward catalytic reduction of 4-nitrophenol (4-NP) was developed for sensitive monitoring of antibiotic residue (chloramphenicol, CAP, used in this case) by using ultraviolet–visible (UV–vis) spectrometry. Gold nanoparticle (AuNP) with 16 nm in diameter was initially synthesized and functionalized with CAP–bovine serum albumin (CAP–BSA) conjugate, which were used as the competitor on monoclonal anti-CAP antibody-coated polystyrene microtiter plate (MTP). In the presence of target CAP, the labeled CAP–BSA on the AuNP competed with target CAP for the immobilized antibody on the MTP. The conjugated amount of CAP–BSA–AuNP on the MTP decreased with the increase of target CAP in the sample. Upon addition of 4-NP and NaBH4 into the MTP, the carried AuNP could catalytically reduce 4-NP to 4-aminophenol (4-AP), and the as-produced 4-AP could be monitored by using UV–vis absorption spectroscopy. Experimental results indicated that the absorbance at 403 nm increased with the increment of target CAP concentration in the sample, and exhibited a dynamic range from 0.1 to 100 ng mL−1 with a detection limit (LOD) of 0.03 ng mL−1 at the 3sblank level. Intra- and inter-assay coefficients of variation were lower than 5.5% and 8.0%, respectively. In addition, the methodology was evaluated for CAP spiked honey and milk samples, respectively. The recovery was 92–112%.  相似文献   

6.
Gold icosahedra with an average diameter of about 600 nm were easily prepared by heating an aqueous solution of the amphiphilic block copolymer, poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20 (Pluronic P123), and hydrogen tetrachloroaurate(III) trihydrate (HAuCl4·3H2O) at 60 °C for 25 min. When sodium chloride (NaCl:HAuCl4 molar ratio=10:1) was added to this aqueous solution, gold nanoplates were produced. The chloride ion was found to be a key component in the formation of the gold nanoplates by facilitating the growth of {111} oriented hexagonal/triangular gold nanoplates, because similar gold nanoplates were produced when LiCl or KCl was added to the aqueous solution instead of NaCl, while gold nanocrystals having irregular shapes were produced when NaBr or NaI was added.  相似文献   

7.
A synergistic electrocatalytic effect was observed in sensors where two electrocatalytic materials (functionalized gold nanoparticles and lutetium bisphthalocyanine) were co-deposited using the Langmuir–Blodgett technique. Films were prepared using a novel method where water soluble functionalised gold nanoparticles [(11-mercaptoundecyl)tetra(ethylene glycol)] (SAuNPs) were inserted in floating films of lutetium bisphthalocyanine (LuPc2) and dimethyldioctadecylammonium bromide (DODAB) as the amphiphilic matrix. The formation of stable and homogeneous mixed films was confirmed by π-A isotherms, BAM, UV–vis and Raman spectroscopy, as well as by SEM and TEM microscopy. The synergistic effect towards hydroquinone of the electrodes modified with LuPc2:DODAB/SAuNP was characterised by an increase in the intensity of the redox peaks and a reduction of the overpotential. This synergistic electrocatalytic effect arose from the interaction between the SAuNPs and the phthalocyanines that occur in the Langmuir–Blodgett films and from the high surface area provided by the nanostructured films. The sensitivity increased with the amount of LuPc2 and SAuNPs inserted in the films and limits of detection in the range of 10−7 mol L−1 were attained.  相似文献   

8.
Polymer-involved nanoparticles or nanoparticle assemblies are now facing a crossroad, where the exposure of nanoparticle and multiple nanoparticles cannot be obtained at the same time. Therefore, a new series of nanoparticle clusters is synthesized, where multiple gold nanoparticles assemble with amphiphilic block copolymers supporting inside. The exposure of gold nanoparticles of the structure is confirmed and increases the reduction rate of 4-nitrophenol by 60%. The assemblies can also be used as surface enhanced Raman scattering(SERS) probes with an enhancement factor(EF) as high as 3×103.  相似文献   

9.
In this article, innovative applications of amphiphilic triblock and pentablock copolymers in the synthesis of gold nanoparticles are reported. The synthesis of gold nanoparticles is performed using two methods. In the first method, micellar aggregates of block copolymers and AuCl4? ions directly react in water; the nanoparticles obtained by this method are variable in size and are associated with copolymer aggregates. In the second method, two processes take place simultaneously: the aggregation of block copolymers and the reduction of Au (III) by the copolymers to form nanoparticles. In contrast with the first method, in this case, the nanoparticles obtained are located inside the copolymer aggregates. In both methods of synthesis, the block copolymers act simultaneously as reducing and stabilizing agents. To understand the role of copolymer aggregates in the synthesis of nanoparticles, molecular simulation methods are used. The gold nanoparticles, copolymer aggregates, and nanocomposite systems are characterized using transmission electron microscopy and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3069–3079  相似文献   

10.
In this work, the time-dependent conjugation process between a thiolated molecule (with anti-parkinsonian properties) and gold nanoparticles has been monitored and studied by the combined use of fast acquisition Ultra Violet–Visible (UV–Vis) spectra and the ability of Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) technique. From the highly informative kinetic profiles obtained it was possible to extract quantitative and qualitative information of the conjugation process which includes i) time-dependent concentration profiles and pure spectra of species involved on conjugation process, ii) estimation of molecule concentration necessary for the completeness of the conjugation reaction, iii) molecule footprint and iv) free energy of molecule adsorption.  相似文献   

11.
In this paper, we describe a method for the growth of gold nanowires and nanoplates starting from a bilayer array of gold seeds, anchored on electrically conducting indium tin oxide (ITO) substrates. This is based on a seed-mediated growth approach, where the nanoparticles attached on the substrate through molecular linkages are converted to nanowires and nanoplates at certain cetyltrimethylammonium bromide (CTAB) concentration. Our modified approach can be used to make nanowires of several tens of micrometers length at a lower CTAB concentration of 0.1 M. The length of the nanowires can be varied by adjusting the time of the reaction. As the concentration of CTAB was increased to 0.25 M, the nanoparticles got converted to nanoplates. These Au nanoplates are (111) oriented and are aligned parallel to the substrate.  相似文献   

12.
Dissipative particle dynamics (DPD) was used to simulate the formation and stabilization of gold nanoparticles in poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) block copolymer micelles. Primary gold clusters that were experimentally observed in the early stage of gold nanoparticle formation were modeled as gold bead in DPD simulation. It showed that gold beads were wrapped by the block copolymer and aggregated into spherical particles inside the micelles and forming stable Pluronic–gold colloids with two-layer structures. Increasing Pluronic concentration, molecular weight, and PPO block length led to the formation of more uniform and more stable gold nanoparticles. Density profiles of water beads suggested that the micelles, especially the hydrophobicity of the micellar cores, played an important role in stabilizing gold nanoparticles. Dynamic process indicated that the formation of gold nanoparticles was controlled by the competition between aggregation of primary gold clusters and the stabilization by micelles of block copolymers.. The DPD simulation results of gold–copolymer–water system agree well with previous experiments, while more structure information on microscopic level could be provided.  相似文献   

13.
Single-crystal gold nanonetworks and nanoplates with novel porous structures were synthesized through a continuous UV irradiation method. The structures of the porous nanonetworks and the nanoplates were found to be citric acid concentration dependent. Transmission electron microscopy (TEM) showed that the two-dimensional (2-D) nanonetworks prepared at the lower citric acid concentration (0.5 mM) had irregular pores and bigger area. Increasing the citric acid concentration resulted in formation of gold nanoplates with hexagonal, triangular or truncated triangular pores. When the acid concentration came to 2 mM, the nanoplates with single and double pores were observable. The selected area electron diffraction (SAED) patterns showed that both the nanonetworks and porous nanoplates were single-crystal. The presence of 1/3{4 2 2} reflections indicated that the surface of the gold nanonetwork and nanoplates is atomically flat.  相似文献   

14.
Lanreotide, a somatostatin analogue peptide used for peptide receptor mediated therapy in metastatic neuroendocrine tumors, was used as capping agent of gold nanoparticles (GNPs) obtained by citrate reduction method. The displacement of the citrate groups from the GNPs surface by Lanreotide (LAN) molecules was evidenced by infrared and Raman spectra. The nanoparticles system, Au@LAN, was also characterized from HRTEM (High-Resolution Transmission Electron Microscopy) and Z-contrast images, UV–vis and EDS spectra. The stability on aging in water solution of the composite is discussed from the UV–vis spectra. The affinity constant of Au@LAN conjugate, calculated from Capillary Zone Electrophoresis data, was found to be 0.52. All the experimental evidence supports that the gold nanoparticles are effectively capped by the Lanreotide molecules through relatively strong covalent interactions. This result opens the possibility of combining the optical properties of gold nanoparticles and of Lanreotide molecule to form a bifunctional system for potential biomedical applications.  相似文献   

15.
The aim of this study was to investigate the effects of surfactant addition on the dispersion of 1–3 wt.% alumina nanoparticles on the self-assembled morphology of poly(styrene-b-butadiene-b-styrene) (SBS) linear triblock copolymer. The neat triblock copolymer microphase separated into PS cylinders self-assembled on a hexagonal array in the PB matrix, being the orientation of domains dependent on the annealing conditions. UV–vis and AFM analyses showed an improvement on dispersion of Al2O3 nanoparticles into SBS matrix by adding dodecanethiol as organic surfactant, due to its miscibility with PS block. Interactions between surfactant-coated Al2O3 nanoparticles with PS block were demonstrated by the variation on the glass transition temperature of this block. AFM analysis showed that the incorporation of surfactant-coated Al2O3 nanoparticles in the SBS matrix have great influence on the orientation of microphase separated domains in SBS nanocomposites.  相似文献   

16.
Gold nanoparticles have been employed in biomedicine since the last decade because of their unique optical, electrical and photothermal properties. Present review discusses the microbial synthesis, properties and biomedical applications of gold nanoparticles. Different microbial synthesis strategies used so far for obtaining better yield and stability have been described. It also includes different methods used for the characterization and analysis of gold nanoparticles, viz. UV–visible spectroscopy, Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, scanning electron microscopy, ransmission electron microscopy, atomic force microscopy, electron dispersive X ray, X ray photoelectron spectroscopy and cyclic voltametry. The different mechanisms involved in microbial synthesis of gold nanoparticles have been discussed. The information related to applications of microbially synthesized gold nanoparticles and patents on microbial synthesis of gold nanoparticles has been summarized.  相似文献   

17.

A simple method for preparing gold nanoparticles in aqueous solution has been developed by using glycosaminoglycan‐heparin as reducing and stabilizing agent and HAuCl4 as precursor. The obtained gold nanoparticles were characterized by UV‐vis spectroscopy, resonance light scattering spectroscopy (RLS), transmission electron microscopy (TEM) and electrophoresis technology. The influence of reactant concentration for the preparation of gold nanoparticles was investigated. The results indicated that the gold nanoparticles carried negative charges in the aqueous solution and the size and shape of the gold nanoparticles could be controlled by changing the concentration of the heparin. Moreover, the gold nanoparticles obtained with relatively high concentration of heparin were very stable and had relative narrow size distribution.  相似文献   

18.
Phosphomolybdate, H3PMo12O40, (PMo12)-doped-poly(3,4-ethylenedioxythiophene) (PEDOT) coated gold nanoparticles have been synthesized in aqueous solution by reduction of AuCl4 using hydroxymethyl EDOT as a reducing agent in the presence of polystyrene sulfonate and PMo12. The resulting PMo12-doped-PEDOT stabilized Au nanoparticles are water soluble and have been characterized by UV–visible spectroscopy, scanning electron microscopy and electrochemistry. Glassy carbon electrodes modified with these Au nanoparticles show excellent stability and catalytic activity towards the reduction of bromate in an aqueous electrolyte solution containing 10 mM H2SO4 and 0.1 M Na2SO4.  相似文献   

19.
在室温(~30 ℃)条件下,氯金酸(HAuCl4)均匀混合在粘稠的表面活性剂聚乙烯吡咯烷酮(PVP)胶体(水为溶剂)中,HAuCl4可以被PVP还原,从而形成纳米片. 本工作中,通过调整晶体生长条件,成功合成了大量新形貌的单晶金纳米片(厚度数十纳米,尺寸为数个微米). 例如,在晶体生长初期阶段,通过引入温度变化(如降温10-20 ℃),形成的金纳米片主要是六角星形,并伴有盾状、内凹外凸的三角状、截角的、三叉的及多台阶等新形纳米片. 结合理论计算,阐明了金纳米片的生长机制:在一定条件下,金(111)晶面不仅可以沿着<110>方向生长成为常规的三角或六角纳米片,还可以沿<211>、<321>等不同方向生长成含有更高指数侧面的新形金纳米片.  相似文献   

20.
The interaction between amino acids (l-cysteine, l-lysine) and gold nanoparticle layers deposited on ITO glasses was investigated. The citrate capped gold nanoparticles (AuNP) were first deposited as a thin layer onto silanized ITO and subsequently linked with an amino acid, due to strong affinity of thiol and amine groups to gold. The gold nanoparticles had an elliptical shape, with size varying between 7 and 14 nm, as indicated by TEM analysis. After deposition on ITO substrate, the nanoparticles self-assembled into large aggregates with poor contact between, as revealed by AFM. After linking l-cysteine or l-lysine to the surface of nanoparticles layer, a change in morphology occured. A better contact between the gold aggregates boundary developed, which improved the conducting properties of the nanostructured layer. The electrical resistance of the AuNPs layer, obtained from IV measurements, was very high (2.8 × 1013 Ω) and slightly decreased after linking the NPs with amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号