首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have obtained a rotationally resolved vacuum ultraviolet pulsed ˉeld ionization-photoelectron (VUV-PFI-PE) spectrum of H2 in the energy range of 15.30-18.09 eV, covering the ionization transitions H2+(X2§+g ,v+=0-18, N+=0-5)?H2(X1§+g , v00=0, J00=0-4). The assignment of the rotational transitions resolved inthe VUV-PFI-PE vibrational bands for H2+(X2§+g , v+=0-18) and their simulation using the Buckingham-Orr-Sichel (BOS) model are presented. Only the ¢N=N+?J00=0 and §2 rotational branches are observed in the VUV-PFI-PE spectrum of H2. However, the vibrational band is increasingly dominated by the 4N=0 rotational branch as v+ is increased. The BOS simulation reveals that the perturbation of VUV-PFI-PE rotational line intensities by near-resonance autoionizing Rydberg states is minor at v+?6 and decreases as v+ is increased. Thus, the rotationally resolved PFI-PE bands for H2+(v+?6) presented here providereliable estimates of state-to-state cross sections for direct photoionization of H2, while the rotationally resolved PFI-PE bands for H2+(v+·5) are useful data for fundamental understanding of the near resonance autoionizing mechanism. On the basis of the rovibrational assignment of the VUV-PFI-PE spectrum of H2, the ionization energies for the formation of H2+(X2§+g , v+=0-18, N+=0-5) from H2+(X1§+g , v00=0,J00=0-4), the vibrational constants (!e, !e?e, !eye, and !eze), the rotational constants (Bv+, Dv+, Be,and ?e), and the vibrational energy spacings ¢G(v++1/2) for H2+(X2§+g , v+=0-18) are determined. With a signiˉcantly higher photoelectron energy resolution achieved in the present study, the precisions of these spectroscopic values are higher than those obtained in the previous photoelectron studies. As expected, the spectroscopic results for H2+(X2§+g , v+=0-18) derived from this VUV-PFI-PE study are in excellent agreement with high-level theoretical predictions.  相似文献   

2.
By preparing methyl bromide (CH3Br) in selected rotational levels of the CH3Br(X(1)A1; v1 = 1) state with infrared (IR) laser excitation prior to vacuum-ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have observed rotationally resolved photoionization transitions to the CH3Br(+)(X(2)E(3/2); v1(+) = 1) state, where v1 and v1(+) are the symmetric C-H stretching vibrational mode for the neutral and cation, respectively. The VUV-PFI-PE origin band for CH3Br(+)(X(2)E(3/2)) has also been measured. The simulation of these IR-VUV-PFI-PE and VUV-PFI-PE spectra have allowed the determination of the v1(+) vibrational frequency (2901.8 +/- 0.5 cm(-1)) and the ionization energies of the origin band (85 028.3 +/- 0.5 cm(-1)) and the v1(+) = 1 <-- v1 = 1 band (84 957.9 +/- 0.5 cm(-1)).  相似文献   

3.
We have observed fully rotationally resolved transitions of the photoelectron vibrational bands 2(4), 2(5), 1(1)2(1), and 1(1)2(3) for ammonia cation (NH3+) by two-color infrared (IR)-vacuum ultraviolet (VUV)- pulsed field-ionization photoelectron (PFI-PE) measurements. By preparing an intermediate rovibrational state of neutral NH(3) with a known parity by IR excitation followed by VUV-PFI-PE measurements, we show that the photoelectron parity can be determined unambiguously. The IR-VUV-PFI-PE measurement of the 2(4) band clearly reveals the formation of both even and odd l states for the photoelectrons, where l is the orbital angular momentum quantum number. This observation is consistent with the conclusion that the lack of inversion symmetry for NH3 and NH3+ allows odd/even l mixings, rendering the production of both odd and even l states for the photoelectrons. Evidence is also found, indicating that the photoionization transitions with DeltaK=0 are strongly favored compared to that with DeltaK=3. For the 2(5), 1(1)2(1), and 1(1)2(3) bands, only DeltaK=0 transitions for the production of even l photoelectron states from the J'K'=2(0) rotational level of NH3(nu1=1) are observed. The preferential formation of even l photoelectron states for these vibrational bands is attributed to the fact that the DeltaK=0 transitions for the formation of odd l photoelectron states from the 2(0) rotational level of NH3(nu1=1) are suppressed by the constraint of nuclear-spin statistics. In addition to information obtained on the photoionization dynamics of NH3, this experiment also provides a more precise value of 3232+/-10 cm-1 for the nu1+ (N-H stretch) vibrational frequency of NH3+.  相似文献   

4.
By using a high-resolution single mode infrared-optical parametric oscillator laser to prepare CH(3)I in single (J,K) rotational levels of the nu(1) (symmetric C-H stretching) =1 vibrational state, we have obtained rovibrationally resolved infrared-vacuum ultraviolet-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectra of the CH(3)I(+)(X(2)E(32);nu(1)(+)=1;J(+),P(+)) band, where (J,K) and (J(+),P(+)) represent the respective rotational quantum numbers of CH(3)I and CH(3)I(+). The IR-VUV-PFI-PE spectra observed for K=0 and 1 are found to have nearly identical structures. The IR-VUV-PFI-PE spectra for (J,K)=(5,0) and (7, 0) are also consistent with the previous J-selected IR-VUV-PFI-PE measurements. The analysis of these spectra indicates that the photoionization cross section of CH(3)I depends strongly on DeltaJ(+)=J(+)-J: but not on J and K. This observation lends strong support for the major assumption adopted for the semiempirical simulation scheme, which has been used for the simulation of the origin bands observed in VUV-PFI-PE study of polyatomic molecules. Using the state-to-state photoionization cross sections determined in this IR-VUV study, we have obtained excellent simulation of the VUV-PFI-PE origin band of CH(3)I(+)(X (2)E(32)), yielding more precise IE(CH(3)I)=76 930.7+/-0.5 cm(-1) and nu(1) (+)=2937.8+/-0.2 cm(-1).  相似文献   

5.
Vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) spectroscopy has been applied to the study of the sulfur monoxide radical (SO) prepared by using a supersonically cooled radical beam source based on the 193 nm excimer laser photodissociation of SO(2). The vibronic VUV-PFI-PE bands for the photoionization transitions SO(+)(X(2)Π(1∕2); v(+) = 0) ← SO(X(3)Σ(-); v = 0); and SO(+)((2)Π(3∕2); v(+) = 0) ← SO(X(3)Σ(-); v = 0) have been recorded. On the basis of the semiempirical simulation of rotational branch contours observed in these PFI-PE bands, we have obtained highly precise ionization energies (IEs) of 83,034.2 ± 1.7 cm(-1) (10.2949 ± 0.0002 eV) and 83,400.4 ± 1.7 cm(-1) (10.3403 ± 0.0002 eV) for the formation of SO(+)(X(2)Π(1∕2); v(+) = 0) and SO(+)((2)Π(3∕2); v(+) = 0), respectively. The present VUV-PFI-PE measurement has enabled the direct determination of the spin-orbit coupling constant (A(0)) for SO(+)(X(2)Π(1∕2,3∕2)) to be 365.36 ± 0.12 cm(-1). We have also performed high-level ab initio quantum chemical calculations at the coupled-cluster level up to full quadruple excitations and complete basis set (CBS) extrapolation. The zero-point vibrational energy correction, the core-valence electronic correction, the spin-orbit coupling, and the high-level correction are included in the calculation. The IE[SO(+)(X(2)Π(1∕2,3∕2))] and A(0) predictions thus obtained are found to be in remarkable agreement with the experimental determinations.  相似文献   

6.
By using a high-resolution infrared (IR) laser to prepare propyne (C(3)H(4)) in selected rotational levels of the excited nu(1) (acetylenic C-H stretching) vibration mode prior to vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have obtained rotationally resolved VUV-PFI-PE spectra for the C(3)H(4) (+)(X (2)E(32,12),nu(1) (+)=1) band. The analysis of these PFI-PE spectra leads to the determination of the spin-orbit constant of A=-13.0+/-0.2 cm(-1) for the C(3)H(4) (+)(X (2)E(32,12),nu(1) (+)=1) state. Using this A constant and the relative rotationally selected and resolved state-to-state photoionization cross sections thus measured, we have obtained an excellent simulation for the VUV-PFI-PE origin band of C(3)H(4) (+)(X (2)E(32,12)), yielding a value of 83 619.0+/-1.0 cm(-1) (10.367 44+/-0.000 12 eV) for the adiabatic ionization energy of C(3)H(4) [IE(C(3)H(4))]. The present two-color IR-VUV-PFI-PE study has also made possible the determination of the C-H stretching frequencies nu(1) (+)=3217.1+/-0.2 cm(-1) for C(3)H(4) (+)(X (2)E(32,12)). The spectral assignment and simulation were guided by high-level ab initio calculations on the IE(C(3)H(4)), Franck-Condon factors for photoionization transitions, and rotational constants and vibrational frequencies for C(3)H(4) (+).  相似文献   

7.
The authors have obtained rotationally resolved vacuum ultraviolet pulsed field ionization-photoelectron (vuv-PFI-PE) spectrum of HD in the photon energy range of 15.29-18.11 eV, covering the ionization transitions HD+(X 2Sigmag+,v+=0-21,N+)<--HD(X 1Sigmag+,v"=0,J"). The assignment of rotational transitions resolved in the vuv-PFI-PE vibrational bands for HD+(X 2Sigmag+,v+=0-20) and their simulation using the Buckingham-Orr-Sichel (BOS) model are presented. Rotational branches corresponding to the DeltaN=N+-J"=0, +/-1, +/-2, +/-3, and +/-4 transitions are observed in the vuv-PFI-PE spectrum of HD. The BOS simulation shows that the perturbation of vuv-PFI-PE rotational line intensities due to near resonance autoionization is very minor at v+>or=5 and decreases as v+ is increased. Thus, the rotationally resolved PFI-PE bands for HD+(v+>or=5) presented here provide reliable estimates of state-to-state cross sections for direct photoionization of HD, while the rotationally resolved PFI-PE bands for HD+(v+<5) are useful data for fundamental understanding of the near resonance autoionizing mechanism. On the basis of the rovibrational assignment of the vuv-PFI-PE bands, the ionization energies for the formation of HD+(X 2Sigmag+,v+=0-20,N+) from HD(X 1Sigmag+,v"=0,J") and the vibrational constants (omegae, omegaechie, omegaeye, and omegaeze), the rotational constants (Be and alphae), the vibrational energy spacings, and the dissociation energy for HD+(X 2Sigmag+) are determined. As expected, these values are found to be in excellent agreement with high level theoretical predictions.  相似文献   

8.
The vacuum ultraviolet(VUV)pulsed field ionization-photoelectron( PFI-PE)spectrum for trichloroethene(ClCH=CCl2)has been measured in the energy range of 76400-79650 cm-1 . The vibrational bands resolved in the VUV-PFI-PE spectrum are assigned based on ab initio vibrational frequencies and calculated Franck-Condon factors for the ionization transitions,yielding eleven vibrational frequencies for ClCH=CCl2+:v1+=148 cm-1,v2+= 80 cm-1,v3+=286 cm-1,v4+=402 cm-1,v5+= 472 cm-1,v6+=660 cm-1,v7+=875 cm-1,v8+=990 cm-1,v9+=1038 cm-1,v10+=1267 cm-1,and v11+=1408 cm-1. These measurements along with the frequency v12+=3073 cm-1 determined in the recent VUV-infrared photo-induced ionization study have provided the complete set of twelve experimental vibrational frequencies for ClCH = CCl2+ in its ground electronic state. On the basis of the spectral simulation of the origin VUV-PFI-PE vibrational band,we have determined the IE(ClCH=CCl2)to be(76441.7±2.0)cm-1((9.4776±0.0002)eV).  相似文献   

9.
Yencha AJ  Lopes MC  King GC  Hochlaf M  Song Y  Ng CY 《Faraday discussions》2000,(115):355-62; discussion 407-29
The pulsed-field ionization (PFI) photoelectron (PE) spectrum of HF has been recorded at the chemical dynamics beamline of the advanced light source over the photon energy range 15.9-16.5 eV using a time-of-flight selection scheme at a resolution of 0.6 meV. Rotationally-resolved structure in the HF+(X 2 pi 3/2, 1/2, v+ = 0, 1) band systems are assigned. The spectral appearance of these systems agrees with a previous VUV laser PFI-PE study. Importantly, extensive rotationally-resolved structure between these two vibrational band systems is also observed. This is attributed to ion-pair formation via Rydberg states converging on the v+ = 1 vibrational levels of the HF+(X 2 pi 3/2, 1/2) spin-orbit states. These Rydberg states are assigned to the 1 sigma+ part of the nd-complexes (sigma, pi, and delta). Ion-pair formation is observed in this study by the detection of F- ions. Some partially rotationally-resolved structure in a previously published threshold photoelectron spectrum is similarly attributed to ion-pair formation (F- detection) through a combination of the v+ = 17 level of the (A 2 sigma+) 3s sigma Rydberg state and the (X 2 pi 3/2, 1/2, v+ = 1) 7d Rydberg states. On the basis of the present study, an accurate experimental value for the dissociation energy of the ground state of HF has been obtained, D0(HF) = 5.8650(5) eV.  相似文献   

10.
Vacuum ultraviolet pulsed-field ionization-photoelectron (PFI-PE) spectra of H(2)S have been recorded at PFI-PE resolutions of 0.6-1.0 meV in the energy range of 10-17 eV using high-resolution synchrotron radiation. The PFI-PE spectrum, which covers the formation of the valence electronic states H(2)S(+) (X (2)B(1), A (2)A(1), and B (2)B(2)), is compared to the recent high-resolution He I photoelectron spectra of H(2)S obtained by Baltzer et al. [Chem. Phys. 195, 403 (1995)]. In addition to the overwhelmingly dominated origin vibrational band, the PFI-PE spectrum for H(2)S(+)(X (2)B(1)) is found to exhibit weak vibrational progressions due to excitation of the combination bands in the nu(1) (+) symmetric stretching and nu(2) (+) bending modes. While the ionization energy (IE) for H(2)S(+)(X (2)B(1)) obtained here is in accord with values determined in previously laser PFI-PE measurements, the observation of a new PFI-PE band at 12.642+/-0.001 eV suggests that the IE for H(2)S(+)(A (2)A(1)) may be 0.12 eV lower than that reported in the He I study. The simulation of rotational structures resolved in PFI-PE bands shows that the formation of H(2)S(+)(X (2)B(1)) and H(2)S(+)(A (2)A(1)) from photoionization of H(2)S(X (1)A(1)) is dominated by type-C and type-B transitions, respectively. This observation is consistent with predictions of the multichannel quantum defect theory. The small changes in rotational angular momentum observed are consistent with the dominant atomiclike character of the 2b(1) and 5a(1) molecular orbitals of H(2)S. The PFI-PE measurement has revealed perturbations of the (0, 6, 0) K(+)=3 and (0, 6, 0) K(+)=4 bands of H(2)S(+)(A (2)A(1)). Interpreting that these perturbations arise from Renner-Teller interactions at energies close to the common barriers to linearity of the H(2)S(+) (X (2)B(1) and A (2)A(1)) states, we have deduced a barrier of 23,209 cm(-1) for H(2)S(+)(X (2)B(1)) and 5668 cm(-1) for H(2)S(+)(A (2)A(1)). The barrier of 23 209 cm(-1) for H(2)S(+)(X (2)B(1)) is found to be in excellent agreement with the results of previous studies. The vibrational PFI-PE bands for H(2)S(+)(B (2)B(2)) are broad, indicative of the predissociative nature of this state.  相似文献   

11.
The photoionization and photodissociation of L-valine are studied by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry at the photon energy of 13 eV. The ionization energy of L-valine and the appearance energies of major fragments are measured by the photoionization efficiency spectrum in the photon energy range of 8-11 eV. Possible formation pathways of the major fragments, NH(2)CHC(OH)(2)(+) (m/z=75), NH(2)(CH(3))(2)(CH)(2)(+) (m/z=72) and NH(2)CHCO(+) (m/z=57), are discussed in detail with the theoretical calculations at the B3LYP/6-31++G (d, p) level. Hydrogen migration is considered as the key way for the formation of NH(2)CHC(OH)(2)(+) (m/z=75) and NH(2)CHCO(+) (m/z=57). Furthermore, other fragments, NH(2)CHCOOH(+) (m/z=74), (CH(3))(2)(CH)(2)(+) (m/z=56), C(4)H(7)(+) (m/z=55), NH(2)CHOH(+) (m/z=46), NH(2)CH(2)(+) (m/z=30) and m/z=18, species are also briefly described.  相似文献   

12.
Vacuum ultraviolet (VUV) photoionization mass spectrometry and photoelectron spectroscopy have played a central role in providing energetic and spectroscopic information for neutrals and cations. The most important data obtainable in a VUV photoionization and photoelectron experiment are ionization energies and 0 K ion dissociation thresholds or appearance energy (AE), from which 0 K bond dissociation energies for neutrals and cations can be deduced. The recent developments in VUV lasers and third-generation synchrotron sources, together with the introduction of the pulsed-field ionization (PFI), photoelectron (PFI-PE), and PFI-photoion (PFI-PI) methods, have revolutionized the field of photoelectron and ion spectroscopy by significantly improving the energy resolution to the range of 0.025–1.0 meV (full width at half maximum, FWHM). These resolutions, which make possible the measurement of photoelectron spectra for many simple molecules at the rotational-resolved level, are ≈100-fold better than those observed in traditional photoelectron studies, making the PFI-PE technique a true spectroscopic method. The recent introduction of the synchrotron-based PFI-PEPICO scheme has shown that AE values for a range of molecules can be determined with an unprecedented precision limited only by the PFI-PE measurement. The synchrotron-based PFI-PEPICO and PFI-PI schemes show great promises for future studies of state- or energy-selected ion-dissociation dynamics and energy-selected ion-molecule reaction dynamics. Further improvement in energy resolution for PFI-PE and PFI-PI measurements has been demonstrated using the two-color photo-induced Rydberg ionization (PIRI) spectroscopic scheme, which involves the photo-induced ionization of intermediate long-lived high-n ( n≥100) Rydberg states. The incorporation of this method by VUV photoexcitation to prepare intermediate high-n ( n≥100) Rydberg states is also expected to greatly increase the energy range of PFI studies. The availability of this array of laser- and synchrotron-based PFI methods, including PFI-PE, PFI-PEPICO, PFI-PI, PFI-ion-pair, and PIRI schemes, ensures an exciting and bright future for VUV photoionization and photoelectron studies in the new millennium.  相似文献   

13.
This paper presents the methodology to generate beams of ions in single quantum states for bimolecular ion-molecule reaction dynamics studies using pulsed field ionization (PFI) of atoms or molecules in high-n Rydberg states produced by vacuum ultraviolet (VUV) synchrotron or laser photoexcitation. Employing the pseudocontinuum high-resolution VUV synchrotron radiation at the Advanced Light Source as the photoionization source, PFI photoions (PFI-PIs) in selected rovibrational states have been generated for ion-molecule reaction studies using a fast-ion gate to pass the PFI-PIs at a fixed delay with respect to the detection of the PFI photoelectrons (PFI-PEs). The fast ion gate provided by a novel interleaved comb wire gate lens is the key for achieving the optimal signal-to-noise ratio in state-selected ion-molecule collision studies using the VUV synchrotron based PFI-PE secondary ion coincidence (PFI-PESICO) method. The most recent development of the VUV laser PFI-PI scheme for state-selected ion-molecule collision studies is also described. Absolute integral cross sections for state-selected H2+ ions ranging from v+ = 0 to 17 in collisions with Ar, Ne, and He at controlled translational energies have been obtained by employing the VUV synchrotron based PFI-PESICO scheme. The comparison between PFI-PESICO cross sections for the H2+(HD+)+Ne and H2+(HD+)+He proton-transfer reactions and theoretical cross sections based on quasiclassical trajectory (QCT) calculations and three-dimensional quantum scattering calculations performed on the most recently available ab initio potential energy surfaces is highlighted. In both reaction systems, quantum scattering resonances enhance the integral cross sections significantly above QCT predictions at low translational and vibrational energies. At higher energies, the agreement between experiment and quasiclassical theory is very good. The profile and magnitude of the kinetic energy dependence of the absolute integral cross sections for the H2+(v+ = 0-2,N+ = 1)+He proton-transfer reaction unambiguously show that the inclusion of Coriolis coupling is important in quantum dynamics scattering calculations of ion-molecule collisions.  相似文献   

14.
The dissociation of energy-selected ND(3) (+) to form ND(2) (+)+D near its threshold has been investigated using the pulsed field ionization-photoelectron (PFI-PE)-photoion coincidence method. The breakdown curves for ND(3) (+) and ND(2) (+) give a value of 15.891+/-0.001 eV for the 0 K dissociation threshold or appearance energy (AE) for ND(2) (+) from ND(3). We have also measured the PFI-PE vibrational bands for ND(3) (+)(X;v(2) (+)=0, 1, 2, and 3), revealing partially resolved rotational structures. The simulation of these bands yields precise ionization energies (IEs) for ND(3) (+) X(0,v(2) (+)=0-3,0,0)<--ND(3) X(0,0,0,0). Using the 0 K AE (ND(2) (+)) and IE(ND(3))=10.200+/-0.001 eV determined in the present study, together with the known 0 K bond dissociation energy for ND(3) [D(0)(D-ND(2))=4.7126+/-0.0025 eV], we have determined the D(0)(ND(2) (+)-D), IE(ND(2)), and 0 K heat of formation for ND(2) (+) to be 5.691+/-0.001 eV, 11.1784+/-0.0025 eV, and 1261.82+/-0.4 kJ/mol, respectively. The PFI-PE spectrum is found to exhibit a steplike feature near the AE(ND(2) (+)), indicating that the dissociation of excited ND(3) (+) at energies slightly above the dissociation threshold is prompt, occurring in the time scale 相似文献   

15.
By preparing ethylene [C2H4(X1Ag)] in selected rotational levels of the nu11(b1u), nu2+nu12(b1u), or nu9(b2u) vibrational state with infrared (IR) laser photoexcitation prior to vacuum ultraviolet (VUV) laser photoionization, we have recorded rotationally resolved pulsed field ionization-photoelectron (PFI-PE) spectra for C2H4+(X2B3u) in the energy region of 0-3000 cm(-1) above the ionization energy (IE) of C2H4(X1Ag). Here, nu2(ag), nu9(b2u), nu11(b1u), and nu12(b1u) represent the C-C stretching, CH2 stretching, CH2 stretching, and CH2 bending modes of C2H4(X1Ag), respectively. The fully rovibrationally resolved spectra have allowed unambiguous symmetry assignments of the observed vibrational bands, which in turn have provided valuable information on the photoionization dynamics of C2H4. The IR-VUV photoionization of C2H4(X1Ag) via the nu11(b1u) or nu2+nu12(b1u) vibrational states is found to predominantly produce vibrational states of C2H4+(X2B3u) with b1u symmetry, which cannot be observed in single-photon VUV-PFI-PE measurements of C2H4(X1Ag). The analysis of the observed IR-VUV-PFI-PE bands has provided the IE(C2H4) = 84,790.2(2) cm(-1) and accurate vibrational frequencies for the nu4+(au)[84.1(2) cm(-1)], nu12+(b1u)[1411.7(2) cm(-1)], nu4+ +nu12+(b1g)[1482.5(2) cm(-1)], nu2+(ag)[1488.3(2) cm(-1)], nu2+ + nu4+(au)[1559.2(2) cm(-1)], 2nu4+ + nu12 +(b1u)[1848.5(2) cm(-1)], 4nu4+ + nu12 +(b1u)[2558.8(2) cm(-1)], nu2+ + nu12 +(b1u)[2872.7(2) cm(-1)], and nu11+(b1u)[2978.7(2) cm(-1)] vibrational states of C2H4+(X2B3u), where nu4+ is the ion torsional state. The IE(C2H4) and the nu4+(au), nu2+(ag), and nu2+ + nu4+ (au) frequencies are in excellent accord with those obtained in previous single-photon VUV-PFI-PE measurements. The other ion vibrational frequencies represent new experimental determinations. We have also performed high-level ab initio anharmonic vibrational frequency calculations for C2H4(X1Ag) and C2H4+(X2B3u) at the CCSD(T)/aug-cc-pVQZ level for guidance in the assignment of the IR-VUV-PFI-PE spectra. All theoretical vibrational frequencies for the neutral and ion, except the ion torsional frequency, are found to agree with experimental vibrational frequencies to better than 1%.  相似文献   

16.
The vacuum ultraviolet (VUV) laser pulsed field ionization photoelectron (PFI-PE) spectrum of cis-dichloroethene (cis-ClCH[Double Bond]CHCl) has been measured in the energy region of 77 600-79 500 cm(-1). On the basis of the semiempirical simulation of the origin PFI-PE band, we have obtained the IE(cis-ClCH[Double Bond]CHCl) to be 77 899.5+/-2.0 cm(-1) (9.658 39+/-0.000 25 eV). The assignment of the vibrational bands resolved in the VUV-PFI-PE spectrum are guided by high-level ab initio calculations of the vibrational frequencies for cis-ClCH[Double Bond]CHCl(+) and the Franck-Condon factors for the ionization transitions. Combining the results of the present VUV-PFI-PE measurement and the recent VUV-infrared-photoinduced Rydberg ionization study, the vibrational frequencies for eleven of the twelve vibrational modes of cis-ClCH[Double Bond]CHCl(+) have been experimentally determined: nu(1) (+)(a(1))=181 cm(-1), nu(2) (+)(a(2))=277 cm(-1), nu(3) (+)(b(2))=580 cm(-1), nu(4) (+)(b(1))=730 cm(-1), nu(5) (+)(a(1))=810 cm(-1), nu(6) (+)(a(2))=901 cm(-1), nu(8) (+)(a(1))=1196 cm(-1), nu(9) (+)(b(2))=1348 cm(-1), nu(10) (+)(a(1))=1429 cm(-1), nu(11) (+)(b(2))=3067 cm(-1), and nu(12) (+)(a(1))=3090 cm(-1)). These values are compared to theoretical anharmonic vibrational frequencies obtained at the MP2/6-311G(2df,p) and CCSD(T)/6-311G(2df,p) levels. The IE prediction for cis-ClCH[Double Bond]CHCl has also been calculated with the wave function based CCSD(T)/CBS method, which involves the approximation to the complete basis set (CBS) and the high-level correlation corrections. The theoretical IE(cis-ClCH[Double Bond]CHCl)=9.668 eV thus obtained is found to have a deviation of less than 10 meV with respect to the experimental IE value.  相似文献   

17.
The A(2)A(1)<--X(2)E(3/2) transition of CH(3)I(+) was investigated by photodissociation (PD) of the cation generated by one-photon mass-analyzed threshold ionization (MATI). Compared to the PD spectrum obtained by excitation of the cation in the main 0-0 band in the MATI spectrum, those obtained by excitation of the cations in the satellite structures showed substantially simplified rotational structures for nondegenerate vibronic bands. Spectral simplification occurred because each satellite consisted mostly of cations with one K quantum number. Spectroscopic constants in the ground vibronic state and in the 2(1)3(5), 2(1)3(8), 3(9), and 3(13) nondegenerate vibrational states in A(2)A(1) were determined via spectral fitting. Also, those in the 2(1)3(n)6(1) (n=1?) degenerate state, which had been reported previously, was improved. The K quantum number in each satellite determined by the present high resolution study was compatible with the prediction by the symmetry selection rule for photoionization. That is, the K quantum number of the ion core in high Rydberg states accessed by one-photon excitation was found to be conserved upon pulsed field ionization. This work demonstrates generation of mass-selected, vibronically selected, and K-selected ion beam by one-photon MATI.  相似文献   

18.
A state-selected beam of hydroxyl radicals is generated using a pulsed discharge source and hexapole field. The OH radicals are characterized by resonance-enhanced multiphoton ionization (REMPI) spectroscopy via the nested D 2Sigma- and 3 2Sigma- Rydberg states. Simplified spectra are observed from the selected |MJ|=3/2 component of the upper Lambda-doublet level of the lowest rotational state (J=32) in ground (v"=0) and excited (v"=1-3) vibrational levels of the OH X 2Pi3/2 state. Two-photon transitions are observed to the D 2Sigma-(v'=0-3) and 3 2Sigma-(v'=0,1) vibronic levels, extending previous studies to higher vibrational levels of the Rydberg states. Spectroscopic constants are derived for the Rydberg states and compared with prior experimental studies. Complementary first-principle theoretical studies of the properties of the D 2Sigma- and 3 2Sigma- Rydberg states [see M. P. J. van der Loo and G. C. Groenenboom, J. Chem. Phys. 123, 074310 (2005), following paper] are used to interpret the experimental findings and examine the utility of the (2+1) REMPI scheme for sensitive detection of OH radicals.  相似文献   

19.
The trifluoromethyl radical, CF(3)(●), is studied for the first time by means of threshold photoelectron spectroscopy (TPES). The radical is produced in the gas phase using the flash-pyrolysis technique from hexafluoroethane as a precursor. CF(3)(+) total ion yield and mass-selected TPES of the radical are recorded using a spectrometer based upon velocity map imaging and Wiley-McLaren time-of-flight coupled to the synchrotron radiation. The high resolution of the instrument and of the photons allows the observation of rich vibrational progressions in the TPES of CF(3)(●). By using Franck-Condon factors computed by Bowman and coworkers, we have been able to simulate the TPES. The initial vibrational temperature of the radical beam has been evaluated at 350 ± 70 K. The structures have been identified as transitions between (n(1),n(2)) and (n(1)(+),n(2)(+)) vibrational levels of CF(3) and CF(3)(+) with small excitation of the breathing mode, ν(1)(+) (,) and large excitation (n(2)(+) = 10-26) of the umbrella mode, ν(2)(+), in the cation. From the energy separation between the two resolved peaks of each band, a value of 994 ± 16 cm(-1) has been derived for the ν(1)(+) breathing frequency of CF(3)(+). For the high-lying n(2)(+) levels, the apparent ν(2)(+) umbrella spacing, 820 ± 14 cm(-1), is fairly constant. Taking into account the ν(2)(+) anharmonicity calculated by Bowman and coworkers, we have deduced ν(2)(+) = 809 ± 14 cm(-1), and semi-empirical estimations of the adiabatic ionization energy IE(ad.)(CF(3)(●)) are proposed in good agreement with most of previous works. A value of the vertical ionization potential, IE(vert.)(CF(3)(●)) = 11.02 eV, has been derived from the observation of a photoelectron spectrum recorded at a fixed photon energy of 12 eV.  相似文献   

20.
The photoionization and photodissociation dynamics of H(2) and D(2) in selected rovibrational levels of the B (1)Sigma(u) (+) and C (1)Pi(u) states have been investigated by velocity map ion imaging. The selected rotational levels of the B (1)Sigma(u) (+) and C (1)Pi(u) states are prepared by three-photon excitation from the ground state. The absorption of fourth photon results in photoionization to produce H(2)(+) X (2)Sigma(g)(+) or photodissociation to produce a ground-state H(1s) atom and an excited H atom with n >or= 2. The H(2) (+) ion can be photodissociated by absorption of a fifth photon. The resulting H(+) or D(+) ion images provide information on the vibrational state dependence of the photodissociation angular distribution of the molecular ion. The excited H(n >or= 2) atoms produced by the neutral dissociation process can also be ionized by the absorption of a fifth photon. The resulting ion images provide insight into the excited state branching ratios and angular distributions of the neutral photodissociation process. While the experimental ion images contain information on both the ionic and neutral processes, these can be separated based on constraints imposed on the fragment translational energies. The angular distribution of the rings in the ion images indicates that the neutral dissociation of molecular hydrogen and its isotopes is quite complex, and involves coupling to both doubly excited electronic states and the dissociation continua of singly excited Rydberg states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号