首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dark red crystals of the halogen-substituted cyclotrigermenes [(tBu3Si)3Ge3X; X = Cl, Br, I] were obtained in good yields by the reaction of [(tBu3Si)3Ge3]+.TTFPB- (TTFPB- = tetrakis(2,3,5,6-tetrafluorophenyl)borate) with potassium halides (KCl, KBr, or KI) in diethyl ether. The crystal structures of the halogen-substituted cyclotrigermenes reveal a cis-bent Ge=Ge double bond, caused by the introduction of the electronegative halogen atom on the sp3 germanium atom of cyclotrigermene. In solution, an intramolecular halogen migration over the three-membered ring skeleton was observed. Facial stereoselectivity in the Diels-Alder reaction of new cyclotrigermenes with 2,3-dimethyl-1,3-butadiene is also reported.  相似文献   

2.
The first stable stannyl radical (tBu2MeSi)3Sn* (1) has been synthesized by the reaction of tBu2MeSiNa with SnCl2-dioxane in diethyl ether. The X-ray crystal structure and electron paramagnetic resonance (EPR) data of this radical show that 1 has a planar geometry, being a pi-radical in both the solid and the liquid states. One-electron oxidation of 1 with Ph3C+.B(C6F5)4- in benzene quantitatively produced the corresponding cation (tBu2MeSi)3Sn+.B(C6F5)4- (2), representing the stable free stannylium ion that has been fully characterized by X-ray analysis and NMR data. Being free, 2 features a record downfield shifted resonance for stannylium ions: +2653 ppm.  相似文献   

3.
The highly twisted tetrakis(di-tert-butylmethylsilyl)disilene 1 was treated with Ph3C+.BAr4- (BAr4-: TPFPB = tetrakis(pentafluorophenyl)borate) in toluene, producing disilene cation radical 3 upon one-electron oxidation. Cation radical 3 was isolated in the form of its borate salt as extremely air- and moisture-sensitive red-brown crystals. The molecular structure of 3 was established by X-ray crystallography, which showed a highly twisted structure (twisting angle of 64.9 degrees) along the central Si-Si bond with a bond length of 2.307(2) A, which is 2.1% elongated relative to that of 1. The cation radical is stabilized by sigma-pi hyperconjugation by the four tBu2MeSi groups attached to the two central sp2-Si atoms. An electron paramagnetic resonance (EPR) study of the hyperfine coupling constants (hfcc) of the 29Si nuclei indicates delocalization of the spin over the central two Si atoms. A reversible one-electron redox system between disilene, cation radical, and anion radical is also reported.  相似文献   

4.
Upon ionization of the P4S3I2 molecule with Ag[Al(OR)4], a highly reactive sulfonium cation P4S3I+ is generated (NMR simulated and assigned). At -80 degrees C this cation reacts with additional P4S3I2 to give either an iodophosphonium P4S3I3+ cation (NMR simulated and assigned) and P4S3 or to give several isomers of a metastable compound that is probably P8S3I3+. This mixture decomposes at 0 degrees C to give only three isomers of the spirocyclic P7S6I2+ cage cation (31P NMR simulated and assigned, X-ray of one isomer, IR assigned). The oxidation of the [Ag(P4S3)2]+ complex by I2 also resulted in the formation of P7S6I2+, but with more by-products. The spirocyclic 15-atom cage of P7S6I2+ has no precedent and contains the first phosphonium center bonded only to P and S atoms. This structural element gives the first experimental clue as to how formal charge-bearing elements in the still unknown class of binary P-Ch (Ch = chalcogen) or homopolyatomic P cations may be constructed.  相似文献   

5.
Single crystals of BaAl2Si2 were grown from an Al molten flux and characterized using single-crystal X-ray diffraction at 10 and 90 K and neutron diffraction at room temperature. BaAl2Si2 crystallizes with the alpha-BaCu2S2 structure type (Pnma), is isostructural with alpha-BaAl2Ge2, and is an open 3D framework compound, where Al and Si form a covalent cagelike network with Ba2+ cations residing in the cages. BaAl2Si2 has a unit cell of a=10.070(3) A, b=4.234(1) A, and c=10.866(3) A, as determined by room-temperature single-crystal neutron diffraction (R1=0.0533, wR2=0.1034). The structure as determined by single-crystal neutron and X-ray diffraction (10 and 90 K) indicates that BaAl2Si2 (Pnma) is strictly isostructural to other (alpha)-BaCu2S2-type structures, requiring site specificity for Al and Si. Unlike BaAl2Ge2, no evidence for an alpha to beta (BaZn2P2-type, I4/mmm) phase transition was observed. This compound shows metallic electronic resistivity and Pauli paramagnetic behavior.  相似文献   

6.
The gas-phase N-alkyl-amino-cation affinities (NAACA) of archetypal anionic main-group element hydrides across the Periodic Table have been investigated by means of a modified G2(+) scheme. The reactions studied include R(2)NB → R(2)N(+) + B(-) (R = H, Me; B = XH(n), n = 0-3; X = F, Cl, Br, O, S, Se, N, P, As, C, Si, Ge). Our calculations indicate that the reasonable linear correlations between NAACA and proton affinities (PA) only exist within the Period 2 anions, including H(3)C(-), H(2)N(-), HO(-), and F(-), or the anions within Periods 3-4 in the Periodic Table, which is significantly different from the alkyl cation affinities, where there is a reasonable correlation between the computed alkyl cation affinity and PA values of the set of anionic main-group element hydrides. The interesting differences can be ascribed to the generalized anomeric effect induced by n(N) → σ*(X-H) negative hyperconjugation found in R(2)NXH(n), with central atom X belonging to Groups 14-16 (X = O, S, Se, N, P, As, C, Si, Ge).  相似文献   

7.
The three-coordinate, T-shaped Co(I) complex, PNPCo (PNP = [(tBu2PCH2SiMe2)2N-], is readily synthesized by magnesium reduction of divalent PNPCoCl. Triplet (S = 1) PNPCo is coordinatively and electronically unsaturated and undergoes a thermally reversible oxidative addition reaction with H2, producing trivalent PNPCo(H)2. In contrast, the reaction with excess primary silane PhSiH3 quantitatively generates the base-stabilized silylene Co(V) compound {kappa2-tBu2PCH2Me2SiNSiMe2CH2tBu2P(H)Si=}Co(H)3(SiH2Ph)2.  相似文献   

8.
The reaction of the methimazolyl (mt, i.e., 2-mercapto-1-methylimidazolide) substituted silane Si(mt)(4) with SnCl(2) and GeCl(2) in dioxane affords the paddlewheel-shaped complexes [ClSi(μ-mt)(4)MCl] (M=Sn (1) and Ge (2), respectively). These compounds represent the first crystallographically characterized hexacoordinate silicon complexes comprising a Sn or Ge atom in the Si coordination sphere. An attempt to synthesize the related silicon compound 3 [ClSi(μ-mt)(4)SiCl] instead afforded the trisilane [ClSi(μ-mt)(4)Si-SiCl(3)] (3a), which provides the first crystallographic evidence for the feasibility of oligosilanes with adjacent hexacoordinate Si atoms. One of the hexacoordinate Si atoms of 3a features the unprecedented (Si(2)S(4))Si skeleton. Natural bonding orbital (NBO) analyses of compounds 1, 2, 3a (and the target compound 3) revealed characteristics of M(II)→Si(IV) (for 2 and 3) or M(I)→Si(IV) (for 3a) dative bonding in the systems with M=Si and Ge, whereas compound 1 exhibits a covalent Sn(III)-Si(III) bond.  相似文献   

9.
Reaction of potassium tris(mercapto-tert-butylpyridazinyl)borate K[Tn(tBu)] with copper(II) chloride in dichloromethane at room temperature led to the diamagnetic copper boratrane compound [Cu{B(Pn(tBu))(3)}Cl] (Pn = pyridazine-3-thionyl) (1) under activation of the B-H bond and formation of a Cu-B dative bond. In contrast to this, stirring of the same ligand with copper(I) chloride in tetrahydrofuran (THF) gave the dimeric compound [Cu{Tn(tBu)}](2) (2) where one copper atom is coordinated by two sulfur atoms and one hydrogen atom of one ligand and one sulfur of the other ligand. Hereby, no activation of the B-H bond occurred but a 3-center-2-electron B-H···Cu bond is formed. The reaction of copper(II) chloride with K[Tn(tBu)] in water gave the same product 2, but a formal reduction of the metal center from Cu(II) to Cu(I) occurred. When adding tricyclohexyl phosphine to the reaction mixture of K[Tn(R)] (R = tBu, Me) and copper(I) chloride in MeOH, the distorted tetrahedral Cu complexes [Cu{Tn(R)}(PCy(3))] (R = tBu 3, Me 4) were formed. Compound 4 is exhibiting an "inverted" κ(3)-H,S,S, coordination mode. The copper boratrane 1 was further investigated by density functional theory (DFT) calculations for a better understanding of the M→B interaction involving the d(8) electron configuration of Cu.  相似文献   

10.
The miscellaneously substituted silyltellanes tBu(2)PhSiTeSiMe(3) (1) and (Me(3)Si)(3)SiTeSiMe(3) were used to synthesize the cyclic tin(II) and lead(II) tellurolates [(tBu(2)PhSiTe)(4)M(2)] (M = Sn (2), Pb (3)), [tBu(2)PhSiTePbC(SiMe(3))(3)](2) (4) and the uncommon cluster compound [{(Me(3)Si)(3)SiTe}(4)Te(2)Sn(4)] (5).  相似文献   

11.
Mixed amidinato amido complexes [Me3SiNC(tBu)NSiMe3]M[N(SiMe3)2] (M = Sn 2, Ge 3) were prepared by the reaction of [Me3SiNC(tBu)NSiMe3]Li (1a) with SnCl2 and GeCl2(dioxane) in ether. The N(SiMe3)2 ligand in these compounds is derived from the rearrangement of the [Me3SiNC(tBu)NSiMe3]- anion with extrusion of tBuCN. The susceptibility of [Me3SiNC(tBu)NSiMe3]- to rearrangement appears to be dependent on reaction solvent and on the coordinated metal center. Single-crystal X-ray diffraction studies of 2 and 3 are presented. Replacement of Me for tBu in the ligand allowed [Me3SiNC(Me)NSiMe3]2SnII (4) to be isolated, and an X-ray structure of this compound is reported. The isolation of 4 indicates that steric factors also play a role in the stability of [Me3SiNC(tBu)NSiMe3]-. Compounds 2 and 3 are outstanding catalysts for the cyclotrimerization of phenyl isocyanates to perhydro-1,3,5-triazine-2,4,6-triones (isocyanurates) at room temperature. In contrast, complex 4 catalytically reacts with phenyl isocyanate to produce isocyanate dimer and trimer in a 52:35 ratio.  相似文献   

12.
The structure of the silicate Rb10[Si6O17] containing a novel dimeric cyclotrisilicate anion is reported. The compound is formed by the reaction of a mixture of SiO2 and Rb at temperatures above 700 degrees C. Systematic investigations by means of differential thermal analysis and temperature-dependent powder X-ray diffraction experiments revealed that the new compound evolved from Rb6[Si3O9], which occurred as an intermediate product. Thus, the dimeric anion [Si6O17]10- is formed by condensation of the monomeric cyclotrisilicate [Si3O9]6-. For both silicates, [Si6O17]10- and [Si3O9]6-, the characteristic ring vibration modes were observed in the IR spectrum. The structure of Rb10[Si6O17] was solved and refined from single-crystal X-ray diffraction data in the orthorhombic space group Pbca (No. 61). Synthesis and structure determination of Rb10[Si6O17] bridge the gap to show that the recently reported structures of Rb14[Si4][Si6O17] and Rb14[Ge4][Si6O17] are indeed fascinating intergrowth structures of the stable oxide Rb10[Si6O17] and the Zintl phases RbSi (Rb4Si4) and RbGe (Rb4Ge4), respectively.  相似文献   

13.
[UI(3)(THF)(4)] reacts at room temperature with 2 equiv of KBp(tBu,Me), in toluene, yielding [U(kappa(3)-H(mu-H)B(pz(tBu,Me))(pz(Me,tBu)))(2)I] (1). This unprecedented complex, stabilized by two asymmetric heteroscorpionate ligands, is formed due to an isomerization process promoted in situ by the metal center. To find a general method for preparing this type of compound, we synthesized the novel asymmetric K[H(2)B(pz(tBu,Me))(pz(Me2))], and by a straightforward salt metathesis with [UI(3)(THF)(4)] the novel bis-asymmetric complex [U(kappa(3)-H(mu-H)B(pz(tBu,Me))(pz(Me2)))(2)I] (2) was isolated and characterized in the solid state and in solution. As indicated by X-ray crystallographic analysis, the U(III) in 1 and 2 is seven-coordinated by two tridentate asymmetric dihydrobis(pyrazoly)borates and by an iodide. In both cases, the coordination geometry around the metal is very distorted, the pentagonal bipyramid being the one which better describes the arrangement of the atoms around the U(III). An approximate C(2) axis can be defined in the solid state, and is maintained in solution as indicated by the (1)H NMR spectrum of 1 and 2. In the course of attempting to crystallize some of the compounds, monocrystals of the dimer [U(kappa(3)-Bp(tBu,Me))(Hpz(tBu,Me))I(mu-I)](2) (3) were isolated. In this compound each U(III) atom is seven-coordinated by one kappa(3)-Bp(tBu,Me), by one terminal and by two bridging iodide ligands, and by a monodentate Hpz(tBu,Me), exhibiting a distorted 4:3 tetragonal base-trigonal geometry.  相似文献   

14.
The tetraphosphides (tBu3Si)3P4M3 (M = Li, Na) and (tBu2PhSi)3P4Na3 have been synthesized in high yield from the reaction of 3 equivalents of the silanides tBu3SiM (M = Li, Na) and tBu2PhSiNa with P4 in benzene. (tBu3Si)3P4M3 (M = Li, Na) are transformed into the unsaturated triphosphides (tBu3Si)2P3M (M = Li, Na) and tBu3SiPM2 in tetrahydrofuran at ambient temperature.  相似文献   

15.
The N,N-diisopropylaminomethyl aluminium compound [tBu2AlCH2NiPr2 x LiCl]2(1) and the gallium compounds Li[tBu2Ga(CH2NiPr2)2](2) and [tBu2GaCH2N(H)iPr2]Cl x tBu3Ga (3) were prepared by transmetallation of N,N-diisopropylaminomethyllithium LiCH2NiPr2 with di-tert-butylaluminium or -gallium chloride, and characterised by elemental analyses, multinuclear NMR spectroscopy (1H, 13C, 27Al, 7Li) and IR spectroscopy. The crystal structures have been determined by single crystal X-ray diffraction. Compound aggregates as a centrosymmetric dimer, with two Al-C-N units connected by a frame of two LiCl molecules [Al-Cl 2.367(1), Cl-Li 2.339(4) and 2.374(4), Li-N 1.977(4)A]. Compound 2 is a lithium organogallate with two weak LiN bonds [1.965(7) and 1.937(7)A]. Compound 3 contains two different moieties: tBu3Ga and a [tBu2GaCH2N(H)iPr2]+ cation, which are bridged by a Cl- anion [Ga-Cl 2.445(1) and 2.579(1), HCl 2.362(3)A].  相似文献   

16.
Reaction of a Cyclic Bis(amino)germylene with Germaniumazides: Trapping-Reactions of Unstable Germa-Imines . The cyclic bis(amino)germylene 1 reacts with different germaniumazides of the type Me2Si(NtBu)2Ge(R)N3 (R = Me ( 2 ), tBu ( 3 ), N(SiMe3)2 ( 4 ), R = N3 ( 5 )). With the exception of 4 all azides lose dinitrogen when treated with 1 and the GeII center coordinates the α-nitrogen of the azide group. It seems to be reasonable to assume a transient germaimine (nitride) which is trapped by further reaction with the azide molecules 2 and 5 or by reaction with the solvent pyridine ( 3 ). In the case of 2 the germatetrazole [Me2Si(NtBu)2]GeN4[Ge(NtBu)2SiMe2]2 ( 6 ) is formed, the tetrazole nitrogens being exclusively substituted by germanium atoms (point symmetry of the molecule Cs(m)). When 1 is treated with 5 a tris(germa)amine [Me2Si(NtBu)2Ge(N3)]3N ( 8 ) is formed, which has an azide group attached to each Ge-atom. X-ray analysis reveals that the nine nitrogen atoms of the azide groups are coplanar with the trigonal planar Ge3N moiety (crystallographic symmetry: 3/m). The reaction of 1 with 3 is very surprising: the pyridine in the product Me2Si(NtBu)2Ge(C5H4N)? N(H)Ge(tBu)(NtBu)2SiMe2 ( 7 ) is bonded via an α-carbon atom while the remaining hydrogen has added to the nitride-nitrogen. 6 crystallizes in the monoclinic system space group C2/m, a = 24.306(9), b = 10.933(6), c = 19.420(9) Å, β = 91.81(2)° and Z = 4. 7 crystallizes in the hexagonal system space group P63/m with a = b = 16.73(1), c = 11.006(8) Å, γ = 120° and Z = 2, and 8 crystallizes in the monoclinic system space group P21/n, a = 11.341(6), b = 26.086(9), c = 13.244(7) Å, β = 98. I2(2)° mit Z = 4.  相似文献   

17.
The synthesis and characterization of new amidinate-stabilized germatrisilacyclobutadiene ylides [L(3)Si(3)GeL'] (L=PhC(NtBu)(2); L'=?L; ?=Ge (3), Si (7)) are described. Compound 3 was prepared by the reaction of [LSi-SiL] (1) with one equivalent of [LGe-GeL] (2) in THF. Compound 7 was synthesized by the reaction of 2 with excess 1 in THF. The bisamidinate germylene [L(2)Ge:] (4) is a by-product in both reactions. Moreover, compound 7 was prepared by the reaction of 3 with one equivalent of 1 in THF. Compounds 3 and 7 have been characterized by NMR spectroscopy, X-ray crystallography, and theoretical studies. The results show that compounds 3 and 7 are not antiaromatic. The puckered Si(3) Ge four-membered rings in 3 and 7 have a ylide structure, which is stabilized by amidinate ligands and the electron delocalization within the Si(3) Ge four-membered ring.  相似文献   

18.
A first structurally characterized primary aminophosphane (Ar 2PNH 2 ( 2); Ar = 2,4,6- iPr 3C 6H 2) that is a stable solid at room temperature without decomposition by self-condensation is reported. Reactions of N-phosphanyllithium amide ( tBu 2PNHLi ( 3)) with Me 2SiCl 2 and MeSiCl 3 in Et 2O result in the formation of Me 2Si(NHP tBu 2) 2 ( 4) and MeSi(NHP tBu 2) 3 ( 5), respectively. Subsequent treatment of 4 and 5 with 2 and 3 equiv of nBuLi gave the dilithium ( 6) and trilithium ( 7) complexes, respectively. Further treatment of 5 with 3 equiv of AlMe 3 yielded the trialuminum complex MeSi[N(AlMe 2)P tBu 2] 3 ( 8). These three complexes were investigated by microanalysis and multinuclear NMR spectroscopy. The dilithium complex [Me 2Si(NLiP tBu 2) 2.3THF] ( 6) and the trilithium complex [MeSi(NLiP tBu 2) 3.3Et 2O] ( 7) were further characterized by single-crystal X-ray structural analysis.  相似文献   

19.
The four-coordinate compound [(tBu2PCH2SiMe2)2N]RuCH3 undergoes rapid double H-C(sp3) activation at -78 degrees C to generate a "hydrido-carbene" complex. DFT calculations suggest that the origin of the low barrier to methane elimination is an alpha-agostic interaction in the low-lying singlet state of the highly unsaturated (PNP)RuMe. The hydrido-carbene complex can be viewed as a "masked" resting state of the four-coordinate cyclometalated alkyl complex, [(tBu2PCH2SiMe2)N(Me2SiCH2P(tBu)(C(CH3)2CH2)]Ru, where hydride migration from metal to carbon occurs before any subsequent reactivity.  相似文献   

20.
Ion pair receptor 3 bearing an anion binding site and multiple cation binding sites has been synthesized and shown to function in a novel binding-release cycle that does not necessarily require displacement to effect release. The receptor forms stable complexes with the test cesium salts, CsCl and CsNO(3), in solution (10% methanol-d(4) in chloroform-d) as inferred from (1)H NMR spectroscopic analyses. The addition of KClO(4) to these cesium salt complexes leads to a novel type of cation metathesis in which the "exchanged" cations occupy different binding sites. Specifically, K(+) becomes bound at the expense of the Cs(+) cation initially present in the complex. Under liquid-liquid conditions, receptor 3 is able to extract CsNO(3) and CsCl from an aqueous D(2)O layer into nitrobenzene-d(5) as inferred from (1)H NMR spectroscopic analyses and radiotracer measurements. The Cs(+) cation of the CsNO(3) extracted into the nitrobenzene phase by receptor 3 may be released into the aqueous phase by contacting the loaded nitrobenzene phase with an aqueous KClO(4) solution. Additional exposure of the nitrobenzene layer to chloroform and water gives 3 in its uncomplexed, ion-free form. This allows receptor 3 to be recovered for subsequent use. Support for the underlying complexation chemistry came from single-crystal X-ray diffraction analyses and gas-phase energy-minimization studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号