首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interactions of dimethyl sulfoxide with carbon dioxide and water molecules which induce 18 significantly stable complexes are thoroughly investigated. An addition of CO2 or H2O molecules into the DMSO⋯1CO2 and DMSO⋯1H2O systems leads to an increase in the stability of the resulting complexes, in which it is larger for a H2O addition than a CO2. The overall stabilization energy of the DMSO⋯1,2CO2 is mainly contributed by the S=O⋯C Lewis acid–base interaction, whereas the O − H⋯O hydrogen bond plays a significant role in stabilizing complexes of DMSO⋯1,2H2O and DMSO⋯1CO2⋯1H2O. Remarkably, the complexes of DMSO⋯2H2O are found to be more stable than DMSO⋯1CO2⋯1H2O and DMSO⋯2CO2. The level of the cooperativity of multiple interactions in ternary complexes tends to decrease in going from DMSO⋯2H2O to DMSO⋯1CO2⋯1H2O and finally to DMSO⋯2CO2. It is generally found that the red shift of the O − H bond involved in an O − H⋯O hydrogen bond increases while the blue shift of a C − H bond in a C − H⋯O hydrogen bond decreases when a cooperative effect occurs in ternary complexes as compared to those of the corresponding binary complexes. © 2018 Wiley Periodicals, Inc.  相似文献   

2.
Bis(dimethyl sulfoxide)bis(flavonato)ruthenium(II) complexes, RuL2(DMSO)2, were synthesized by the reaction of dichlorotetrakis(dimethyl sulfoxide)ruthenium(II) with the sodium salts of 5-hydroxyflavone, 5-hydroxy-4′-methoxyflavone and 5-hydroxy-3′,4′,5′,7-tetramethoxyflavone, ( L ). The complexation was followed by 1H nmr spectroscopy. The 1:1 kinetically favoured tris(dimethyl sulfoxide)chloroflavonatoruthenium(II) complexes, RuLCl(DMSO)3, were initially formed and then transformed into the thermodynamically more stable ones. Each one of these complexes, by reacting with another equivalent of lig-and L, also gave rise to a mixture of 1:2 kinetic species, from which the 1:2 thermodynamically more stable bis(dimethyl sulfoxide)bis(flavonato)ruthenium(II) complexes, RuL2(DMSO)2, were formed. The complexes were characterized by extensive studies involving 1H, 13C nuclear magnetic resonance, infrared and ultraviolet-visible spectroscopy, mass spectrometry, cyclic voltammetry and elemental analysis. Such 1:2 complexes exhibited properties of two nonequivalent flavonate ligands and also of two non-equivalent dimethyl sulfoxide ligands; one of these dimethyl sulfoxide ligands is considered to be S-bonded and the other O-bonded. Also two quasireversible one-electron redox steps were observed at 0.53 to 0.57 and 0.44 to 0.41 V (vs Saturated Calomel Electrode). The spectroscopic results obtained allow for the discussion of stereochemistry of each bis(dimethyl sulfoxide)bis(flavonato)ruthenium(II) complex and to postulate its possible structure as one corresponding to the more anisochronous species.  相似文献   

3.
The Gibbs energies of transferring triglycine (3Gly, glycyl-glycyl-glycine) from water into mixtures of water with dimethyl sulfoxide (χDMSO = 0.05, 0.10, and 0.15 mole fractions) at 298.15 K are determined from the interphase distribution. An increased dimethyl sulfoxide (DMSO) concentration in the solvent slightly raises the positive values of Δtr G (3Gly), possibly indicating the formation of more stable 3Gly-H2O solvated complexes than ones of 3Gly-DMSO. It is shown that the change in the Gibbs energy of transfer of 3Gly is determined by the enthalpy component. The relationship of 3Gly and 18-crown-6 ether (18C6) solvation’s contributions to the change in the Gibbs energy of [3Gly18C6] molecular complex formation in H2O-DMSO solvents is analyzed, and the key role of 3Gly solvation’s contribution to the change in the stability of [3Gly18C6] upon moving from H2O to mixtures with DMSO is revealed.  相似文献   

4.
It is revealed by FTIR and electron absorption spectroscopy that the reactions of dimethyl sulfoxide with the nitro complexes of Co-porphyrins both in the solid phase and an inert solvent afford six-coordinate complexes with the general formula (DMSO)Со(Por)(NO2) (Por is meso-tetraphenyl- and meso-tetra-p-tolylporphyrinato dianions). These compounds are stable in the solid state, whereas they partially decompose in an inert solvent to form five- and six-coordinate complexes. The ambident nitrite and dimethyl sulfoxide ligands are coordinated to the metal atom through the N and O atoms, respectively, which was confirmed by the application of isotope-containing compounds 15NO2 and DMSO-d6.  相似文献   

5.
Summary The platinum(II) halidecis-[Pt(DMTC)(DMSO)X2] andcis-[Pt(DETC)(DMSO)X2](X=Cl or Br; DMSO=dimethyl sulfoxide; DMTC=EtOSCN-Me2; DETC=EtOSCNEt2) adducts and the platinum(II) and palladium(II) halide adducts,trans-[M(DETC)2X2] (M=Pt or Pd; X=Cl or Br), have been prepared. The complexes were characterized by i.r., and1H and13Cn.m.r. spectroscopy. Both DMTC and DETC coordinate through the sulphur atoms. The 1:2 DETC complexes present the usualtrans configuration, whereas the presence of DMSO favourscis geometry in the mixed species.  相似文献   

6.
《Mendeleev Communications》2021,31(6):890-892
The ternary system water–ethylene glycol–dimethyl sulfoxide (H2O–EG–DMSO) was investigated by differential scanning calorimetry in the temperature range of 188–298 K. In the concentration range from ∼10 to ∼50 mol% DMSO, crystallization or glass formation are not observed when the temperature is lowered to 188 K. Significant supercooling of the solution in this composition range is explained by the existence of spatial networks of H2O and EG.  相似文献   

7.
The stability constants of copper(II) complexes with nicotinate ion in water–ethanol and water–dimethyl sulfoxide mixtures are determined potentiometrically at 25.0 ± 0.1°C at ionic strength of 0.25 (NaClO4). The stability of the copper(II) nicotinate complex significantly increases with ethanol content in the solution, thus making it possible to control the biologically important process by varying the solvent composition. The increase in DMSO concentration causes a less noticeable rise in stability, with its maximum observed at 0.1 dimethyl sulfoxide mole fractions. A comparative analysis of the findings and stability constants of Cu2+ complexes with pyridine-type ligands is carried out. The results are discussed using the solvation thermodynamics approach.  相似文献   

8.
Experimental data on electron absorption spectra (EASs) and the kinetics of substitution of Co2+ for the central Cd2+ ion in rhodoporphyrin complexes (CdRodP) in the reaction with CoCl2 in acetonitrile (AN) and ZnCl2 in dimethyl sulfoxide (DMSO) and the substitution of Zn2+ for Cd2+ in pyrroporphyrin complexes (CdPyrP) in the reaction with ZnCl2 in DMSO are reported and discussed. The evolution of EASs in the reaction of metal-ligand exchange and the effective and true rate constants of the exchange reaction are reported. The activation energies and activation entropies are estimated.  相似文献   

9.
Changes in the stability of the cadmium(ii) ethylenediamine complexes in mixed water—DMSO solvents were studied by pH-metry and calorimetry. Complex cations [Cd(en)]2+, [Cd(en)2]2+, and [Cd(en)3]2+ are formed in aqueous solutions, and the [Cd(en)4]2+ complex with a partially dentate ligand is stable in DMSO. An increase in the DMSO content in a solvent increases the stability of the complexes. The maximum increase in logK is observed for coordinatively saturated compounds. The thermodynamics of complexation is discussed from the viewpoint of solvation approach. Principal differences in the influence of aqueous-alcohol and aqueous-aprotic solvents on the stability of the metal amino complexes were revealed. Protolytic solvents exert a destabilizing effect on the multiligand complexes, because the coordination sphere is involved in H bonding.  相似文献   

10.
[Fe(dmbipy)Cl4][dmbipyH], 1 (dmbipy is 4,4′-dimethyl-2,2′-bipyridine), was prepared from reaction of FeCl3 · 6H2O with 4,4′-dimethyl-2,2′-bipyridine in 0.1 molar aqueous HCl. Treatment of 1 with dimethyl sulfoxide in methanol produced [Fe(dmbipy)Cl3(DMSO)], 2 (DMSO is dimethyl sulfoxide). Both complexes were characterized by IR, UV-vis, and 1H-NMR spectroscopies and their structures were studied by single crystal diffraction. Compounds 1 and 2 are high-spin with spin multiplicity of six.  相似文献   

11.
Photochemical reactions of organic sulfur compounds (CH3SCH3, C2H5SCH3 and C2H5SC2H5)–chlorine atom complexes have been studied using a combined pulse radiolysis-laser flash photolysis technique. Excitation of all complexes has resulted in photobleaching with a similar quantum yield (0.37±0.07), independent of solvent polarities and concentration of solutes. The results were compared with previous studies of the analogous dimethyl sulfoxide (DMSO)–Cl complexes. It is concluded that the significant change of photobleaching quantum yields of the excited DMSO–Cl complex observed in the DMSO-CCl4 mixed solvent is mainly due to the specific solvation effect of DMSO for cations.  相似文献   

12.
Treatment of [Fe(bipy)Cl4][bipy · H] (1) and [Fe(phen)Cl4][phen · H] (3) (where bipy is 2,2′-bipyridine and phen is 1,10-phenanthroline) with dimethyl sulfoxide in methanolic solution produced [Fe(bipy)Cl3(DMSO)] (2) and [Fe(phen)Cl3(DMSO)] (4) (where DMSO is dimethyl sulfoxide), respectively. The resulting complexes were characterized by elemental analysis, IR, UV–Vis and 1H NMR spectroscopies and by the X-ray diffraction method. These complexes are high spin with a spin multiplicity of 6.  相似文献   

13.
Abstract

The reaction of platinum(II) halides with stoichiometric amounts of either dimethyl sulfoxide (DMSO) or thiocarbamic ester (L) in acetone yields the complexes cis-[Pt(L)(DMSO)X2], where L α MTC (EtOSCNHMe), ETC (EtOSCNHEt) or TC (EtOSCNH2) and X α Cl or Br. The compounds have been isolated and characterized by elemental analysis and by infrared and nmr (1H and 13C) spectroscopy. Either dimethyl sulfoxide or thiocarbamic ester coordinate through the sulphur atom. In the MTC and ETC adducts the planar ligand molecule is present in the isomeric form bearing the N-alkyl group in an anti position with respect to the thiocarbonyl group.  相似文献   

14.
Four new perchlorate complexes of tetravalent actinides with dimethyl sulfoxide (DMSO) molecules (An4+ = Th, U, Np, Pu) are synthesized and studied. According to the X-ray diffraction data, compounds [Th(DMSO)9](ClO4)4 · 2CH3CN (I), [U(DMSO)8](ClO4)4 · CH3CN (II), [Np(DMSO)8](ClO4)4 · CH3CN (III), and [Pu(DMSO)8](ClO4)4 · CH3CN (IV) crystallize in the triclinic crystal system (space group P1). The crystals of compounds IIIV are isostructural. The absorption spectra of the complexes in the IR and visible regions are measured. All compounds exhibit a decrease in the frequencies of stretching vibrations ν(SO) over the spectrum of free DMSO, indicating the formation of the O-bonded complexes of An4+. The optical spectra of the crystalline compounds exhibit shifts of the bands of electronic f-f transitions of the An4+ ions relative to the hydrated ions: the bathochromic shifts for the U and Np complexes and the hypsochromic shift for the Pu complex. The first coordination sphere of the actinide atoms in the studied complexes is highly stable.  相似文献   

15.
The reaction mechanism of the formation of alkali metal ethynides C2H2 + MOH → C2HM + H2O (M = Li, Na, K) is studied for the gas phase (MP2/6-311++G**//RHF/6-31+G*) and also with regard to the solvent effect of dimethyl sulfoxide (DMSO) included within the continuum model. Among all acetylene complexes with alkali metal hydroxides considered (C2H2·MOH (M = Li, Na, K)), only the complex with KOH is thermodynamically stable in DMSO solution. The formation of this structure results in activation of the acetylene molecule towards electrophilic attack. The formation of alkali metal ethynide in solution is also thermodynamically favorable only in the system with potassium hydroxide of a whole series of metals considered. Further, the ethynide ion can interact in KCCK·HOH systems.  相似文献   

16.
To reveal the denaturation mechanism of lysozyme by dimethyl sulfoxide (DMSO), thermal stability of lysozyme and its preferential solvation by DMSO in binary solutions of water and DMSO was studied by differential scanning calorimetry (DSC) and using densities of ternary solutions of water (1), DMSO (2) and lysozyme (3) at 298.15 K. A significant endothermic peak was observed in binary solutions of water and DMSO except for a solution with a mole fraction of DMSO (x 2) of 0.4. As x 2 was increased, the thermal denaturation temperature T m decreased, but significant increases in changes in enthalpy and heat capacity for denaturation, ΔH cal and ΔC p, were observed at low x 2 before decreasing. The obtained amount of preferential solvation of lysozyme by DMSO (∂g 2/∂g 3) was about 0.09 g g−1 at low x 2, indicating that DMSO molecules preferentially solvate lysozyme at low x 2. In solutions with high x 2, the amount of preferential solvation (∂g 2/∂g 3) decreased to negative values when lysozyme was denatured. These results indicated that DMSO molecules do not interact directly with lysozyme as denaturants such as guanidine hydrochloride and urea do. The DMSO molecules interact indirectly with lysozyme leading to denaturation, probably due to a strong interaction between water and DMSO molecules.  相似文献   

17.
含吡啶的抗肿瘤转移NAMI-A衍生物的制备和水解机理动力学   总被引:1,自引:0,他引:1  
目的研究配体结构对NAMI-A衍生物水解机理、电化学性质的影响。方法制备了trans-[RuCl4(DMSO)(3-MePy)][(3-MePy)H](3-MePy=3-甲基吡啶,化合物1)和trans-[RuCl4(DMSO)(4-MePy)][(4-MePy)H](4-MePy=4-甲基吡啶,化合物2)。用UV、NMR、CV法研究化合物1、化合物2的水解机理-动力学、溶液稳定性及电化学性质。结果化合物1和化合物2与NAMI-A相似,在pH7.40的缓冲液中发生脱氯水解反应(Ⅰ氯水解及Ⅱ氯水解)(分步反应);在pH 5.00缓冲液中DMSO(二甲亚砜)及少量吡啶水解。测定各水解反应表观速率常数及半衰期、溶液稳定性及氧化还原电位。结论化合物1、化合物2的Ⅰ氯、Ⅱ氯及DMSO水解反应机理与NAMI-A相似,而且各水解速率与NAMI-A相差不大,即用甲基吡啶取代咪唑环,对NAMI-A衍生物的Ⅰ氯、Ⅱ氯及DMSO水解反应速率影响较小。化合物在酸性溶液中的稳定性明显高于中性溶液。  相似文献   

18.
The effect of composition of ethanol–dimethyl sulfoxide (EtOH–DMSO) solvents (χDMSO = 0.0–1.0 mole fractions) on the stability of silver(I) complexes with 18-crown-6 ether (18C6) has been studied potentiometrically at 298.15 K. The increasing of DMSO concentrations in mixed solvents are shown to considerably reduce the stability of 18C6 complexes with silver(I) ion ([Ag18C6]+). A change in the solvation state of the central ion is suggested to be the key factor in shifting complexing equilibrium.  相似文献   

19.
The effect of a water–dimethyl sulfoxide solvent (X DMSO= 0–0.97, where X DMSOis the mole fraction of DMSO) on the thermodynamics of complexation between Ag+and 18-crown-6 and the solvation of all reagents involved in this equilibrium were studied. In aqueous solutions, the complex is stable mainly because of the enthalpy contribution to r G°. For X DMSO> 0.3, the contributions from entropy and enthalpy become comparable in magnitude, but they are opposite in sign. In the binary solvent, the complex is most stable at X DMSO= 0.2 to 0.3. Analysis of the enthalpy characteristics of reagent solvation showed that this solvent effect was due to the superposition of two opposite solvation contributions occurring with an increase in the DMSO concentration in the binary solvent, namely, the destabilization of the ligand solvate sphere and the formation of stable Ag+complexes with DMSO.  相似文献   

20.
A new general approach to anionic transformations of acetylenes using superbasic media has been developed. It allows series of new reactions which are not undergone by acetylene under conventional conditions. The triads Se8KOHdimethylsulfoxide (DMSO), Se8KOHDMSO, TeKOH-hexamethyl-phosphorictriamide (HMPA) are proposed as new effective reagents for the preparation of unsaturated compounds of sulfur, selenium and tellerium. A series of reactions of acetylene with sulfur, selenium and tellerium proceeding in DMSO or HMPA in the presence of alkali and water at 80–120° leading to divinyl sulfide, divinyl selenide and divinyl teluride in 25–80% yields have been found. Thiophen, di-1-(1,3-butadienyl) sulfide, 1-vinyl-2-thiabicyclo[3.2.0]hept-3-ene, and dihydrothiophen have been obtained by the reaction of vinylacetate with sulfur. The reaction of vinylacetylene with selenium affords selenophen, di-1-(1,3-butadienyl) selenide, 1-vinyl-2-selenabicyclo[3.2.0]hept-3-ene, methyl (1-(1,3-butadienyl) sulfide, and methylthiomethyl 1-(1,4-butadienyl) selenide, vinyl 1-(1,3-butadienyl) sulfide, and methylthiomethyl 1-(1,3-butadienyl) selenide (the latter two with DMSO participation). The reaction of vinylacetate with tellerium gives mainly di-1-(1,3-butadienyl) telluride. A series of reactions between DMSO and selenium leading to dimethyl sulfide, dimethyl sulfoselenide, and methylthiomethyl selenide have been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号