首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and characterization of amido-amine cyclam based metal complexes is described. A novel tetraazamacrocycle ligand precursor (Li2[1,8-Bn2-1,4,8,11-tetraazacyclotetradecane], Li2Bn2cyclam, 2) is reported. Reactions of 2 with MCl4(THF)2 afforded M(Bn2cyclam)Cl2 (M = Zr 3, Hf 4). The two complexes show trigonal prismatic metal coordination geometries in the solid-state molecular structures. The cross-bridged cyclam 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (CB-H2cyclam 5) was used to prepare the lithiated ligand precursor (CB-Li2cyclam 6) and (CB-(Me3Si)2cyclam 7). M(CB-cyclam)Cl2 (M = Zr 8, Hf 9) were synthesized from reactions of MCl4(THF)2 with 6. The structures of 3 and 4 are compared with those of zirconium and hafnium complexes derived from cyclam and unsaturated tetraazamacrocyclic ligands.  相似文献   

2.
A series of zirconium and hafnium alkoxide and amide complexes containing symmetrical tridentate pyrrolyl ligand, [C4H2NH(2,5-CH2NMe2)2] have been synthesized conveniently by treatment of 2,6-di-tert-butylphenol, tert-butanol or pyrrole in pentane and their reactivity over ring opening polymerization of ε-caprolactone have been carried out. Reactions of [C4H2NH(2,5-CH2NMe2)2] with M(NEt2)4 (M = Zr or Hf) originate [C4H2N(2,5-CH2NMe2)2]M(NEt2)3 (1, M = Zr; 2, M = Hf). Furthermore, reactions of [C4H2N(2,5-CH2NMe2)2]M(NEt2)3 with 2,6-di-tert-butylphenol, tert-butanol or pyrrole afford [C4H2N(2,5-CH2NMe2)2]M(OC6H3-2,6-tBu2)(NEt2)2 (3, M = Zr; 4, M = Hf), [C4H2N(2,5-CH2NMe2)2]M(OtBu)3 (5, M = Zr; 6, M = Hf) and [C4H2N(2,5-CH2NMe2)2]M(C4H4N)3 (7, M = Zr; 8, M = Hf), respectively, in satisfactory yield. All the complexes have been characterized by NMR spectra as well 3, 4 and 6 subjected to the X-ray diffraction analysis. Complexes 3-8 have been used as initiators for the ring-opening polymerization of ε-caprolactone and observed broad PDI values (1.84-2.75) representing multiple reactivity centers of these complexes.  相似文献   

3.
Group 4 metal complexes bearing new phenoxy(benzimidazolyl)-imine, -amine and -amide ligands have been synthesized. A series of metal chloride derivatives has been prepared via treatment of MCl4(THF)2 (M = Ti, Zr, Hf) with the in situ generated sodium salt of the (benzimidazolyl)imine phenol 1. Reaction of the pro-ligand 2 with TiCl4(THF)2 afforded the corresponding complex 8 in which the amine proton remains bound to the nitrogen donor. Benzyl complexes of zirconium and hafnium were synthesized via treatment of pro-ligands 1 and 2 with M(CH2Ph)4 precursors. The complexes [NNO]M(CH2Ph)3 (6 M = Zr, 7 M = Hf) were found to undergo benzyl migration from the metal centre to the imine carbon of the ligand backbone giving complexes 11 and 12; the migration follows first order kinetics. The reaction of 1 with Ti(NMe2)4 led to the formation of an unusual C-C coupled product in which a new piperazine ring has formed. Complexes 11 and 12 undergo related transformations, leading to analogous C-C coupled products which were characterized by X-ray crystallography. Deuterium labelling experiments were carried out to determine the mechanistic pathway of the reactions. Chloride and benzyl complexes 3-12 were screened as pre-catalysts for olefin polymerization.  相似文献   

4.
A series of pyrrolyl-imines HL1-6 was prepared by the condensation of pyrrole-2-carboxyaldehyde with different amines. The reaction of 2 equiv of pyrrolyl-imine with tetrabenzyl complexes of hafnium and zirconium M(CH2Ph)4 (M=Hf or Zr) gave dibenzyl complexes (L3-6)2M(CH2Ph)2, which were characterized by NMR spectroscopy and crystal structure analysis. NMR spectra of the complexes with secondary alkyl substituents at the imine nitrogen (isopropyl: 3a, 4-tert-butylcyclohexyl: 4a and 4b) suggest that rapid racemization between Δ and Λ configurations occurs in solution on the NMR time scale. The complexes with pyrrolide-imine ligands with a tertiary alkyl group such as tert-butyl (5a and 5b) or 1-adamantyl (6a and 6b) at the imine nitrogen possess cis-configured benzyl groups. Hafnium complexes 5a and 6a react with B(C6F5)3 in bromobenzene-d5 to give the corresponding cationic benzyl complexes, which exhibit high activity for ethylene polymerization (5a: 2242 kg-polymer/ mol-Hf h bar, 6a: 2096 kg-polymer/ mol-Hf h bar). Zirconium complexes 5b and 6b display a remarkably high ethylene polymerization activity when activated with methylaluminoxane (5b: 17,952 kg-polymer/mol-Zr h bar, 6b: 22,944 kg-polymer/mol-Zr h bar).  相似文献   

5.
Group IV metallocene triphenylsiloxy chlorides, Cp2MCl(OSiPh3) (1, M=Ti; 2, M=Zr; 3, M=Hf), and cyclic organohydroborates, Cp2M(OSiPh3){(μ-H)2BC8H14} (4, M=Zr; 5, M=Hf), were synthesized and characterized. The new hafnocene chloride derivative 3 was obtained by treating Cp2HfCl2 with triphenylsilanol and piperidine. The 18-electron cyclic organohydroborates 4 and 5 were afforded by reacting 2 and 3 with K[H2BC8H14], the potassium salt of the 9-BBN dimer. Reaction of 1 with K[H2BC8H14] causes reduction of the Ti(IV) center and produces the well-known Ti(III), 17-electron, paramagnetic dimer [Cp2Ti(μ-Cl)2TiCp2] (6). Single-crystal X-ray diffraction structures of 3, 4, 5, and 6 were determined.  相似文献   

6.
Equivalent addition reactions of PhN(Li)SiMe3 to nitriles, RCN (R = dimethylamido, 1-piperidino), generated non-symmetric guanidinato lithium [(Et2O)LiN(SiMe3)C(NMe2)N(Ph)]2 (1) or [(THF)LiN(SiMe3)C(NMe2)N(Ph)]2 (2) and [(Et2O)LiN(SiMe3)C(N(CH2)5)N(Ph)]2 (5) which further reacted with zirconium or hafnium tetrachloride to form Zr and Hf guanidinato complexes with the general formula [PhNC(R)NSiMe3]3MCl (R = dimethylamido, M = Zr (3), Hf (4); R = 1-piperidino, M = Zr (6), Hf (7)). Complexes 1-4, 6 and 7 were well characterized by 1H, 13C NMR and microanalysis, the single crystal X-ray diffraction analysis data for complexes 1, 3, 4 and 7 were also provided. Furthermore, complexes 3, 4, 6 and 7 were found to be active for ethylene polymerization. The influences of cocatalyst, pressure, reaction temperature and Al/M ratio on activity were investigated.  相似文献   

7.
Ken Ohmori 《Tetrahedron》2004,60(6):1365-1373
Cationic metallocene species, generated from Cp2MCl2 and AgClO4 (M=Zr, Hf), were used for the glycosylation of catechin derivative 2, enabling a concise synthesis of a glycosyl flavonoid, astilbin (1). Further study revealed the efficiency of this Lewis acidic species for SN1-type activation of the C(4) position of catechin derivative 11, enabling selective substitution with various nucleophiles.  相似文献   

8.
A series of ansa-metallocene complexes with an allyl substituted silane bridge [(CH2CHCH2)CH3Si(C5H4)2]TiCl2 (1), [(CH2CHCH2)CH3Si(C9H6)2]MCl2 [M=Ti (2), Zr (3), Hf (4)] and [(CH2CHCH2)CH3Si(C13H8)2]ZrCl2 (6) have been synthesized and characterized. The molecular structure of 6 has been determined by X-ray crystallographic analysis. Complexes 1-4, 6 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization in the presence of MMAO. The results showed that the self-immobilized catalysts 1-4, 6 kept high ethylene polymerization activities of ca. 106 g PE mol−1 M h−1 and high molecular weight (Mw≈105) of polyethylene.  相似文献   

9.
The tetradentate [OSSO]-type bis(phenol) ligands, [{2,2′-(HOC6H2-4,6-R2)2CH2SCH2CH2SCH2}] (R = tBu, 2; Br, 3) react with MBz4 (M = Zr, Hf) to yield the corresponding dibenzyl complexes, [M{2,2′-(OC6H2-4,6-R2)2CH2SCH2CH2SCH2}Bz2] (R = Br, M = Zr, 4Br; Hf, 5Br; R = tBu, M = Hf, 5) in a good to very good yield. Zirconium diamido complexes, [Zr{2,2′-(OC6H2-4,6-R2)2CH2SCH2CH2SCH2}(NMe2)2] (R = tBu, 6; Br, 6Br) were prepared in a reaction of the corresponding disodium salt of 2 or 3 generated in situ with ZrCl2(NMe2)2(THF)2. Heating of 6 with TMSCl at 35 °C afforded zirconium dichloro complex, [Zr{2,2′-(OC6H2-4,6-tBu2)2CH2SCH2CH2SCH2}Cl2] (7), whereas the titanium analog 8 was prepared in a direct reaction with TiCl4. While for complexes 4Br, 5, 5Br, 6, 6Br and 7 single C2-symmetric isomers were observed in solution at room temperature, as revealed by the NMR spectroscopic data, titanium complex 8 formed as a mixture of cis-α (8a) and cis-β (8b) isomers in a ratio of approx. 20:80% (measured in CD2Cl2). The VT NMR studies revealed a reversible conversion of 8a into 8b above 60 °C. The X-ray crystal structure determination of complexes 4Br, 5Br and 7 confirmed their C2-symmetrical configuration in the solid state with cis-arranged benzyl/chloro groups and the trans-coordination of two bulky phenolato moieties. The zirconium dibenzyl complexes exhibit good catalytic activities in homopolymerization of 1-hexene (atactic poly(1-hexene), PDI = 1.5-1.7) and vinylcyclohexane (isotactic poly(vinylcyclohexane), PDI = 1.2-1.8) upon activation with a co-catalyst. In both polymerizations no increase of activity was observed for the complex 4Br with electron-withdrawing substituents on phenolate rings. Moreover, polymerization of liquid propylene catalyzed by the titanium dichloro isomeric mixture 8 afforded at 5 °C ultrahigh molecular weight atactic/isotactic polypropylene mixtures.  相似文献   

10.
The diarylamido-based PNP pincer ligand can be used successfully for support of organometallic Hf complexes (PNP = [(4-Me-2-iPr2P-C6H3)2N]). (PNP)HfCl3 (3) was prepared via reaction of (PNP)Li (2) with HfCl4(OEt2). Reactions of (PNP)HfCl3 with alkyl Grignards led to triple alkylation to produce (PNP)HfMe3 (4) with a small methyl or only double alkylation to give (PNP)Hf(CH2SiMe3)2Cl (5) with a larger alkyl. Structures of 3, 4, and 5 in the solid state were established by X-ray diffraction studies. Structures of the alkyl complexes 4 and 5 display remarkably irregular coordination environments about Hf, while in 3 it is approximately octahedral. Compound 4 was found to be thermally stable at 75 °C. On the other hand, thermolysis of 5 at similar conditions led to a mixture of products, the major one of which is believed to be a Hf alkylidene on the basis of in situ NMR spectroscopic observations (e.g., δ 248.2 ppm in the 13C{1H} NMR spectrum).  相似文献   

11.
Reaction of quinolin-8-amine with 1H-pyrrole-2-carbaldehyde or 5-tert-butyl-1H-pyrrole-2-carbaldehyde catalyzed by HCO2H forms N-((1H-pyrrol-2-yl)methylene)quinolin-8-amine (≡ HL, 3a) or N-((5-tert-butyl-1H-pyrrol-2-yl)methylene)quinolin-8-amine (≡ HL′, 3b). Treatment of 3a and 3b respectively with AlMe3 or AlEt3 in toluene affords corresponding aluminum complexes LAlMe2 (4a), L′AlMe2 (4b) and LAlEt2 (4c). Reaction of 3a and 3b with an equivalent of ZnEt2 in toluene generates L2Zn and L′2Zn, respectively. A related compound N-((1H-pyrrol-2-yl)methylene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)benzenamine (≡ HL″, 7) was prepared by reaction of 2-(3,5-dimethyl-1H-pyrazol-1-yl)benzenamine with 1H-pyrrole-2-carbaldehyde in the presence of HCO2H. Reaction of 7 with AlMe3 gives L″2AlMe (8), and with ZnEt2 yields L″2Zn (9). All new compounds were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 4b, 5b and 8 were additionally characterized by single crystal X-ray diffraction analyses. Complexes 4a-4c, and 8 were proved to be active catalysts for the ring-opening polymerization (ROP) of ?-caprolactone (?-CL) in the presence of BnOH. The kinetic study of the polymerization reactions catalyzed by 4a and 8 was performed.  相似文献   

12.
A series of aluminum and zinc complexes supported by functionalized phenolate ligands were synthesized and characterized. Reaction of 2-(3,5-R2C3N2)C6H4NH2 (R = Me, Ph) with salicylaldehyde or 3,5-di-tert-butylsalicylaldehyde afforded 2-((2-(1H-pyrazol-1-yl)phenylimino)methyl)phenol derivatives 2a-2d. Treatment of 2a-2d with an equiv. of AlR23 (R2 = Me, Et) gave corresponding aluminum aryloxides 3a-3e, while reaction with an equiv. of ZnEt2 afforded zinc aryloxides 4a-4d. Treatment of 2c with 0.5 equiv. of ZnEt2 formed diphenolato zinc complex 5. All new compounds were characterized by 1H and 13C NMR spectroscopy and elemental analyses. The structures of complexes 3a, 4a and 5 were further characterized by single crystal X-ray diffraction techniques. The catalytic activity of complexes 3-5 toward the ring-opening polymerization of ε-caprolactone was studied. The zinc complexes (4a-4d) exhibited higher catalytic activity than the aluminum complexes (3a-3e). The diphenolato zinc complex 5 showed lower catalytic activity than the ethylzinc complexes 4a-4d. The aluminum complex (3b) is inactive to initiate the ROP of rac-lactide, while the zinc complex (4d) is active initiator for the ROP of rac-lactide, giving atactic polylactide.  相似文献   

13.
A bisphosphine in which a PhP-PPh bond bridges 1,8-positions of naphthalene, 1,2-dihydro-1,2-diphenyl-naphtho[1,8-cd]-1,2-diphosphole (1), was used as a bridging ligand for the preparation of dinuclear group 6 metal complexes. Free trans-1, a more stable isomer having two phenyl groups on phosphorus centers mutually trans with respect to a naphthalene plane, was allowed to react with two equivalents of M(CO)5(thf) (M = W, Mo, Cr) at room temperature to give dinuclear complexes (OC)5M(μ-trans-1)M(CO)5 (M = W (2a), Mo (2b), Cr (2c)). The preparation of the corresponding dinuclear complexes bridged by the cis isomer of 1 was also carried out starting from the free trans-1 in the following way. Mono-nuclear complexes M(trans-1)(CO)5 (M = W (3a), Mo (3b), Cr (3c)) which had been prepared by a reaction of trans-1 with one equivalent of the corresponding M(CO)5(thf) (M = W, Mo, Cr) complex, were heated in toluene, wherein a part of the trans-3a-c was converted to their respective cis isomer M(cis-1)(CO)5. Each cis trans mixture of the mono-nuclear complexes 3a-c was treated with the corresponding M(CO)5(thf) to give a cis trans mixture of the respective dinuclear complexes 2a-c. The cis isomer of the ditungsten complex 2a was isolated, and its molecular structure was confirmed by X-ray analysis, showing a shorter W?W distance of 5.1661(3) Å than that of 5.8317(2) Å in trans-2a.  相似文献   

14.
Two types of di-n-butyltin(IV) complexes {[nBu2Sn(O2CR)]2O}2 · L 1-4 and nBu2Sn(O2CR)2Y 5-8 (when L=H2O, R=2-pyrazine 1; L=0, R=2-pyrimidylthiomethylene 2, 1-naphthoxymethylene 3; L=C6H6, R=2-naphthoxymethylene 4; when Y=H2O, R=2-pyrazine 5; Y=0, R=2-pyrimidylthiomethylene 6, 1-naphthoxymethylene 7, 2-naphthoxymethylene 8) have been prepared in 1:1 or 1:2 molar ratios by reactions of di-n-butyltin oxide with the heteroatomic (N, O or S) carboxylic acids. The complexes 1-8 are characterized by elemental, IR, 1H and 13C NMR spectra. And except for complexes 6 and 7, the complexes 1-5 and 8 are also characterized by X-ray crystallography diffraction analyses, which reveal that the tin atom of complex 5 is seven-coordinated, while the complexes 1-4 and 8 are all hexa-coordinated. The nitrogen atom of the aromatic ring in complexes 1 and 5 participates in the interactions with the Sn atom.  相似文献   

15.
Aromatic aldehydes and aryl isocyanates do not react at room temperature. However, we have shown for the first time that in the presence of catalytic amounts of group(IV) n-butoxide, they undergo metathesis at room temperature to produce imines with the extrusion of carbon dioxide. The mechanism of action has been investigated by a study of stoichiometric reactions. The insertion of aryl isocyanates into the metal n-butoxide occurs very rapidly. Reaction of the insertion product with the aldehyde is responsible for the metathesis. Among the n-butoxides of group(IV) metals, Ti(OnBu)4 (8aTi) was found to be more efficient than Zr(OnBu)4 (8aZr) and Hf(OnBu)4 (8aHf) in carrying out metathesis. The surprisingly large difference in the metathetic activity of these alkoxides has been probed computationally using model complexes Ti(OMe)4 (8bTi), Zr(OMe)4 (8bZr) and Hf(OMe)4 (8bHf) at the B3LYP/LANL2DZ level of theory. These studies indicate that the insertion product formed by Zr and Hf are extremely stable compared to that formed by Ti. This makes subsequent reaction of Zr and Hf complexes unfavorable.  相似文献   

16.
[MBr(CO)3{κ2(N,O)-pyca}] [M = Mn(1a), Re(1b), pyca = pyridine-2-carboxaldehyde] and [MoCl(η3-C3H4Me-2)(CO)2{κ2(N,O)-pyca}] (1c) react with aminoacid β-alanine to give the corresponding iminopyridine complexes 2a-2c. The same method affords the iminopyridine derivatives from γ-aminobutyric acid (GABA) (3a-3c) and 3-aminobenzoic acid (4a-4c). For complexes 2a-2c, 3a, 3c and 4a, the solid state structures have been determined by X-ray crystallography, revealing interesting differences in their hydrogen-bonding patterns in solid state.  相似文献   

17.
Cyclopalladated complexes with the Schiff base N-(benzoyl)-N-(2,4-dimethoxybenzylidene)hydrazine (H2L, 1) have been described. The reaction of 1 with Li2[PdCl4] in methanol yields the complex [Pd(HL)Cl] (2). [Pd(HL)(CH3CN)Cl] (3) has been prepared by dissolving 2 in acetonitrile. In methanol-acetonitrile mixture, treatment of 2 with two mole equivalents of PPh3 produces [PdL(PPh3)] (4) and that with one mole equivalent of PPh3 produces [Pd(HL)(PPh3)Cl] (5). Crystallization of 2 from dmso-d6 results into isolation of [Pd(HL)((CD3)2SO)Cl] (6). In 2, the monoanionic ligand (HL) is C,N,O-donor and the Cl-atom is trans to the azomethine N-atom. In 3, 5 and 6, HL is C,N-donor and the Cl-atom is trans to the metallated C-atom. The remaining fourth coordination site is occupied by the N-atom of CH3CN, the P-atom of PPh3 and the S-atom of (CD3)2SO in 3, 5 and 6, respectively. Thus on dissolution in acetonitrile and dmso and in reaction with stoichiometric PPh3 the incoming ligand imposes a rearrangement of the coordinating atoms on the palladium centre. On the other hand, in presence of excess PPh3 deprotonation of the amide functionality in 2 occurs and the Cl-atom is replaced by the P-atom of PPh3 to form 4. Here the dianionic ligand (L2−) remains C,N,O-donor as in 2. The compounds have been characterized with the help of elemental analysis (C, H, N), infrared, 1H NMR and electronic absorption spectroscopy. Molecular structures of 3, 4, and 6 have been determined by X-ray crystallography.  相似文献   

18.
The reactions between oxophilic group 4 metal chlorides, ??-keto ylides in THF, led to the formation of titanium, zirconium and hafnium edge-shared [M2Cl10]2? complexes (1a?C3f). We describe that the reaction between MCl4 (M = Ti, Zr and Hf) with phosphorus ylides produce edge-shared [M2X10]2? complexes instead of O-coordination previously reported complexes. Adding dimethyl sulfoxide (DMSO) to these complexes in room temperature crystalline solid [M(DMSO)8] · 4Cl · mH2O · DMSO] (M = Ti (1g), Zr (2g) and Hf (3g); m = 0?C3) together with phosphonium salts in mother liquid were formed. The compounds were characterized by elemental analysis, IR and 1H, 13C and 31P NMR spectroscopy.  相似文献   

19.
Tungsten(0) carbene complexes of the type (OC)5WC(NMeCH2CHCHCH2OH)R 2 (R=Me: 2a; R=Ph: 2b) were generated by aminolysis of (OC)5WC(OMe)R with cis-NHMeCH2CHCHCH2OH. Like their Cr-congeners 1, complexes 2 exist at room temperature as mixtures of Z- and E-isomers with regard to the C-N bond. The metallacyclic complexes (OC)4WC(η2-NMeCH2CHCHCH2OH)R (4) were obtained in good yields upon photo-decarbonylation of 2. Deprotonation/silylation of the complexes (OC)4MC(η2-NMeCH2CHCHCH2OH)Me (M=Cr: 3a; M=W: 4a) with one equivalent of nBuLi/Me3SiCl gave (OC)4MC(η2-NMeCH2CHCHCH2OSiMe3)CH3 (M=Cr: 5; M=W: 6), whereas with two equivalents of nBuLi/Me3SiCl complexes (OC)4MC(η2-NMeCH2CHCHCH2OSiMe3)CH2SiMe3 (M=Cr: 7; M=W: 8) were formed. Hydrolysis of the latter yielded selectively (OC)4MC(η2-NMeCH2CHCHCH2OH)CH2SiMe3 (M=Cr: 9; M=W: 10). The complexes 1-10 were analyzed in solution by one- and two-dimensional NMR spectroscopy (1H, 13C, 29Si, 1H/1H COSY, 1H/1H NOESY, 13C/1H HETCOR).  相似文献   

20.
Reaction of 2-benzoylpyridine thiosemicarbazone (H2Bz4DH, HL1) and its N(4)-methyl (H2Bz4Me, HL2) and N(4)-phenyl (H2Bz4Ph, HL3) derivatives with SnCl4 and diphenyltin dichloride (Ph2SnCl2) gave [Sn(L1)Cl3] (1), [Sn(L1)PhCl2] (2), [Sn(L2)Cl3] (3), (4) [Sn(L3)PhCl2] (5) and [Sn(L3)Ph2Cl] (6). Infrared and 1H, 13C and 119Sn NMR spectra of 1-3, 5 and 6 are compatible with the presence of an anionic ligand attached to the metal through the Npy-N-S chelating system and formation of hexacoordinated tin complexes. The crystal structures of 1-3, 5 and 6 show that the geometry around the metal is a distorted octahedron formed by the thiosemicarbazone and either chlorides or chlorides and phenyl groups. The crystal structure of 4 reveals the presence of and trans [Ph2SnCl4]2−.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号