共查询到20条相似文献,搜索用时 109 毫秒
1.
固相萃取/高效液相色谱法测定地表水中磺酰脲类农药的研究 总被引:3,自引:0,他引:3
建立了固相萃取/高效液相色谱法(SPE/HPLC)同时测定地表水中五种磺酰脲类农药的方法。研究了固相萃取提取、净化方法,优化了高效液相色谱条件并用二极管阵列检测器进行定量分析。五种磺酰脲类农药在0.1~10.0μg/mL范围内线性良好,相关系数在0.9992~0.9998之间,相对标准偏差在1.8%~4.1%之间,平均回收率为72.8%~103%。本方法中五种磺酰脲类农药的检出限在0.02~0.22 ng/mL范围。用该法分析了某水域地表水,取得满意结果,表明本方法具有一定的实用性。 相似文献
2.
固相膜萃取/高效液相色谱法测定环境水体中的磺酰脲类除草剂 总被引:2,自引:0,他引:2
建立了一种基于C18固相萃取膜预富集、高效液相色谱法定量分析环境水体中6种痕量磺酰脲类除草剂的快速分析方法。优化了色谱分离条件,考察了洗脱剂种类与体积、水样pH值和盐效应等条件对萃取效率的影响。在优化条件下,6种磺酰脲类除草剂的峰面积与其质量浓度呈良好的线性关系,苯磺隆的线性范围为0.1020.0μg/L,其余均为0.0520μg/L,相关系数为0.999 00.999 5,方法检出限为0.0190.037μg/L。对地表水和海水的加标回收率分别为92.6%105.7%和89.8%108.7%,相对标准偏差分别为0.7%7.1%和0.5%4.0%。该方法操作简单、快速、准确、灵敏度高。 相似文献
3.
分子印迹固相萃取-高效液相色谱法同时检测烟叶中磺酰脲类农药残留 总被引:1,自引:0,他引:1
以氯磺隆(CS)为模板分子,甲基丙烯酸为功能单体,三羟甲基丙烷三甲基丙烯酸酯为交联剂,在二氯甲烷氛围中,经沉淀聚合制备氯磺隆分子印迹聚合物(CS-MIP)微球。将该聚合物微球作为填料制得分子印迹固相萃取柱用于样品前处理,建立了分子印迹固相萃取-高效液相色谱(MIP-SPE-HPLC)同时检测烟叶中6种磺酰脲类除草剂残留的分析方法。针对氯磺隆、甲磺隆、苄嘧磺隆、苯磺隆、胺苯磺隆和烟嘧磺隆6种磺酰脲类除草剂,在烟叶中加标0.50~50 μg/g,经氯磺隆分子印迹固相萃取柱(CS-MIP-SPE)净化和富集,高效液相色谱(HPLC)检测,其平均回收率为77.60%~102.05%,相对标准偏差为0.16%~7.07%,检出限为0.08~0.46 μg/g。将MIP-SPE-HPLC方法用于实际农药残留检测,结果表明可同时满足烟叶中多种磺酰脲类除草剂残留量的检测要求。 相似文献
4.
建立了同时测定保健食品中7种磺酰脲类降血糖药物(格列吡嗪、甲苯磺丁脲、妥拉磺脲、格列齐特、格列本脲、格列美脲和格列喹酮)的固相萃取/高效液相色谱(SPE/HPLC)分析方法。样品经甲醇超声提取,用C18固相萃取柱净化后进行HPLC分析。采用Agilent Zorbax SB-C18色谱柱(250 mm×4.6 mm,5μm),以乙腈(A)-0.02%磷酸溶液(B)为流动相,梯度洗脱,流速1.0 mL/min,柱温30℃,检测波长228 nm。结果表明,7种目标物在0.2~20μg/mL范围内线性关系良好,相关系数(r)大于0.999 9,检出限(LOD,S/N≥3)均为0.1 mg/kg,在5种不同基质中的加标回收率为81%~115%,相对标准偏差(RSD)小于9%。 相似文献
5.
固相萃取-高效液相色谱法同时检测大米中12种磺酰脲类除草剂的残留 总被引:8,自引:0,他引:8
建立了固相萃取前处理净化技术-高效液相色谱(HPLC)同时检测大米中12种磺酰脲类除草剂残留的方法。采用ENVITM-18(C18)硅胶柱和ENVI-Carb(GCB)石墨化碳柱对样品进行净化、萃取,采用C8柱,以乙腈和5 mmol/L 冰乙酸混合溶剂为流动相进行梯度洗脱,在240 nm下进行检测。12种磺酰脲类除草剂在0.01~0.50 μg/g添加范围内的回收率为72.2%~106.5%,相对标准偏差为0.6%~6.4%,检出限为0.01~0.02 μg/g。 相似文献
6.
采用固相萃取,用超高效液相色谱-串联质谱法(UPLC-MS/MS)建立了水中27种磺酰脲类除草剂的分析方法。通过对固相萃取柱、淋洗液、流动相等的优化,确定以Oasis HLB固相萃取柱、乙腈为淋洗液、0.1%乙酸-甲醇(7∶3,V/V)为流动相做水样预处理。在最优条件下,目标物回收率均为79.8%~124.5%,相对标准偏差(RSDs)为6.9%~9.6%,线性范围均为1~2 000μg/L,线性相关系数(R2)在0.999以上。该方法具有检测限低、回收率高等优点,经实际样品测试,可适用于水中27种磺酰脲类除草剂残留的同时检测。 相似文献
7.
8.
在线固相萃取富集高效液相色谱法测定水中有机锡化合物 总被引:4,自引:0,他引:4
建立了在线固相萃取富集-反相高效液相色谱测定水样中四苯基锡(TrPhT)、四乙基锡(TrET)、四丁基锡(TrBT)的方法。使用C18柱作为在线固相萃取富集柱,以C8反相柱作为分离柱,V(甲醇)∶V(H2O)=90∶10)(内含0.05%三氟乙酸)作为流动相在线分离有机锡化合物。3种有机锡化合物TrPhT、TrET、TrBT的检出限分别为1.7、7.3、7.3μg/L。3种有机锡化合物的回收率在80.8%~90.1%之间,测定的相对标准偏差在2.9%~9.3%之间。用建立的方法测定水中有机锡化合物得到了满意的结果。 相似文献
9.
固相萃取-高效液相色谱法同时测定大豆和大米中的磺酰脲类和二苯醚类除草剂残留 总被引:7,自引:1,他引:7
建立了大豆和大米中磺酰脲类和二苯醚类除草剂多残留同时检测的高效液相色谱分析方法。样品经乙腈提取,正己烷液-液分配,C18固相萃取小柱净化后,采用高效液相色谱方法分离,以乙腈-三乙胺盐酸溶液作流动相,梯度洗脱,紫外检测器检测。对样品前处理和色谱分析条件进行了优化,8种除草剂(甲磺隆、氯磺隆、苄嘧磺隆、吡嘧磺隆、三氟羧草醚、精恶唑禾草灵、乙氧氟草醚、乙羧氟草醚)在0.05~2.0 mg/L范围内线性关系良好。方法的定量限(S/N=10)为0.01~0.02 mg/kg,能达到国家有关上述除草剂残留限量的要求。大豆和大米样品的平均加标回收率分别为91.6%~116.1%和76.6%~110.8%,相对标准偏差(RSD)为1.0%~12.2%。所建立的方法在30 min内可完成一次检测,具有简便快速、灵敏可靠的特点,适用于大豆和大米中除草剂多残留的测定。 相似文献
10.
在线固相萃取-高效液相色谱法测定水体中的多环芳烃 总被引:1,自引:0,他引:1
建立了在线固相萃取-液相色谱测定水体残留的多环芳烃的方法,用于测定自来水中的20种多环芳烃( PAHs)。直接进样1 mL经过过滤的水体样品,其中的被测组分富集在SPE柱( Acclaim PA II,50 mm×4.6 mm,3μm)上,在线完成净化和萃取富集;再通过阀切换将它们转移至分析流路,在Hypersil Green PAH色谱柱(150 mm ×3 mm,3μm)上分离检测。在线固相萃取流路以水和乙腈为流动相,0.4和0.6 mL/min流速梯度富集/萃取和洗脱;分析流路亦以水和乙腈为流动相,0.8 mL/min流速梯度洗脱,采用紫外254 nm检测无荧光效应的苊烯和弱荧光效应的萘,其它的多环芳烃化合物则于不同的荧光检测通道里,在其对应的最大激发/发射波长下灵敏测定。整个分析流程32 min即可完成。20种PAHs的保留时间的相对标准偏差均小于0.2%,色谱峰面积的相对标准偏差均小于1.3%(n=7);在3个浓度数量级范围内峰面积与进样质量浓度的线性相关系数均大于0.9910,0.05μg/L的自来水加标样品的回收率为57%~140%,5μg/L的自来水加标样品的回收率为85%~116%;多数有荧光响应的PAHs的方法检出限均小于0.02μg/L (S/N=3)。 相似文献
11.
Fe3O4@MOF-808磁性固相萃取结合高效液相色谱法测定大米中3种二苯醚类除草剂 总被引:1,自引:0,他引:1
利用溶剂热法构筑了Fe3O4@MOF-808吸附剂,将其用于大米中除草醚(NIT)、乙氧氟草醚(OXY)和甲羧除草醚(BIF)3种二苯醚类除草剂的富集,结合高效液相色谱法,建立了大米中该类除草剂的分析方法。研究通过傅里叶变换红外光谱、X射线衍射仪、扫描电子显微镜以及振动样品磁强计对构筑的磁性吸附剂的结构、表面形貌及磁强度进行表征。表征结果显示,球形的Fe3O4纳米颗粒与八面体形貌的MOF-808成功复合,Fe3O4@MOF-808饱和磁化强度可达40.35 emu/g,可以满足磁性固相萃取的需求;对吸附剂用于大米中3种二苯醚类除草剂富集的磁性固相萃取条件(吸附剂用量、吸附时间、洗脱溶剂种类以及洗脱体积)进行了优化。优化结果显示,25 mg吸附剂在6 min内即可达到对目标物的完全吸附,洗脱溶剂采用0.5 mL×2的甲醇。在最优的磁性固相萃取条件下,结合高效液相色谱-紫外检测法,建立了大米中3种二苯醚类除草剂的分析方法。方法在2~300 μg/L范围内线性关系良好(r > 0.998), NIT、OXY、BIF的检出限和定量限依次为0.6、0.6、0.4 μg/kg和2.0、2.0、1.5 μg/kg,在5、10和20 μg/kg 3个加标水平下的回收率为87.3%~96.7%,相对标准偏差不超过10.8%,且富集因子在25~29之间。将所建方法用于大米中NIT、OXY、BIF的分析,各样品均未检出这3种二苯醚类除草剂。该方法具有操作简单、快速、准确的特点,适用于大米样品中除草剂的残留分析。 相似文献
12.
建立了固相萃取与高效液相色谱在线联用测定水样中3种雌激素(己烯雌酚、己烷雌酚、双烯雌酚)痕量残留的方法。以溶胶凝胶技术合成的聚合物为固相萃取材料,对水样中的雌激素进行萃取富集,考察了样品溶液不同pH、上样流速及洗脱溶剂等条件对合成材料富集效果的影响。结果表明,在优化的条件下,该方法对3种雌激素的检出限(S/N=3)为0.07~0.13 μg/L,样品中的加标回收率为82.31%~99.43%,相对标准偏差(RSD)为1.61%~7.15%。方法简便可靠,适用于饮用水中雌激素的痕量残留检测。 相似文献
13.
建立了在线净化/固相萃取(SPE)-高效液相色谱(HPLC)快速、准确测定饮用水和环境水体中的两种痕量除草剂百草枯和敌草快的方法。样品用大体积自动进样器注入在线净化小柱并流经固相萃取小柱,通过双梯度高效液相色谱系统中的上样泵实现净化和富集后,通过阀切换将固相萃取小柱切换至分析流路中;用分析泵将待测物从富集柱冲洗至分析柱进行测定。上样泵流速和分析泵流速分别为0.7和0.6 mL/min,采用等度洗脱方式完成两种除草剂的分离和检测。检测波长分别为260 nm (百草枯)和311 nm (敌草快),进样体积为2.5 mL,整个分析时间为16 min。该方法在1.0~20 μg/L范围内线性关系良好,两种除草剂的线性相关系数均大于0.9980,检出限分别为0.10和0.12 μg/L(S/N=3)。该方法前处理简单,快速,可用于饮用水和环境水体中痕量除草剂的测定。 相似文献
14.
采用沉淀聚合法,以红霉素(erythromycin,ERY)为模板,甲基丙烯酸(methacrylic acid,MAA)为功能单体,乙二醇二甲基丙烯酸酯(ethyleneglycoldimethacrylate,EGDMA)为交联剂,甲醇/乙腈(1:4,v/v)为致孔剂制备了ERY分子印迹聚合物(molecularly imprinted polymers,MIPs)。通过扫描电镜、平衡吸附实验等对制备的印迹和非印迹聚合物进行表征和测定,结果表明所制备的MIPs对ERY具有特异性吸附作用。Scatchard分析证明MIPs对ERY的吸附存在两类不同结合位点,最大表观结合量(Qmax)和平衡解离常数(Kd)分别为Qmax1=45.24 mg/g,Kd1=0.028 g/L; Qmax2=87.53 mg/g,Kd2=0.20 g/L。以制备的MIPs为吸附剂的分子印迹固相萃取柱,结合高效液相色谱法能够快速检测猪肉样品中的ERY残留,线性范围为0.5~50 mg/L(r2=0.9994),检出限(S/N=3)为0.2 mg/kg。猪肉样品中不同添加水平下ERY的加标回收率为95.2%~104.2%,相对标准偏差(RSD)小于5%。该方法选择性好,灵敏、可靠,可用于猪肉等复杂食品样本中ERY残留的检测。 相似文献
15.
采用C18毛细管整体柱作为固相微萃取整体柱,构建在线固相微萃取-高效液相色谱联用系统,同步富集检测环境水样中的5种苯氧羧酸类除草剂。详细考察了联用系统运行条件对富集检测的影响。联用系统运行最佳参数为:固相微萃取整体柱长度20 cm,进样流速0.04 mL/min,进样13 min,洗脱流速0.02 mL/min,洗脱5 min。在最佳条件下,5种苯氧羧酸类除草剂的检出限为:9 μg/L (苯氧丙酸)、4 μg/L (2-(2-氯)-苯氧丙酸)、4 μg/L (2-(3-氯)-苯氧丙酸)、5 μg/L (2,4-二氯苯氧乙酸)、5 μg/L (2-(2,4-二氯苯氧基)丙酸)。与HPLC系统直接进样对比,联用系统对5种检测对象表现出优良的富集能力。5种苯氧羧酸类除草剂的回收率在79.0%~98.0%之间(RSD≤3.9%)。该方法成功应用于水样中5种苯氧羧酸类除草剂的检测,结果令人满意。 相似文献
16.
Penghua Wang Jiangyong Hu Youming Tan 《International journal of environmental analytical chemistry》2013,93(13):1267-1281
A reliable and robust analytical method based on solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet (UV) detector was developed for the simultaneous determination of five cephalosporin antibiotics (Ceftazidime, Cefradine, Cefaclor, Cefotaxime and Cefoperazone) in various water samples. Under optimised conditions, it was applicable to preconcentrate up to 500?ml of water samples in the OASIS HLB cartridges with reasonable recoveries for all the cephalosporin antibiotics tested. Recoveries were as follows: deionised water, tap water and groundwater, between 84.2 and 98.9%; surface water, between 71.2 and 81.0%; influent and effluent of wastewater treatment plant (WWTP), between 56.9 and 72.1%. The method detection limits (MDLs) for different water samples were in the range of 26 to 59?ng?l?1. Real water samples were analysed using the proposed approach to demonstrate the applicability and validation. Negative results were obtained for the tap water and groundwater. However, all the selected cephalosporin antibiotics were identified in the influent and effluent of a local WWTP at ng?l?1–µg?l?1 level. In addition, Ceftazidime was found in surface water with a concentration of 0.75–2.60?µg?l?1. The results indicate that the ‘pseudo-persistent’ contamination of cephalosporin antibiotics in the water environment could not be neglected. 相似文献
17.
制备了MIL-53(Fe)和聚多巴胺(PDA)修饰的磁性Fe_3O_4复合材料MIL-53(Fe)@PDA@Fe_3O_4,并将其作为吸附剂用于磁固相萃取-高效液相色谱法(MSPE-HPLC)检测环境水样中4种磺酰脲类除草剂(甲嘧磺隆、苄嘧磺隆、吡嘧磺隆和氯嘧磺隆)。实验优化了高效液相色谱条件(乙腈和含0.01%(体积分数)三氟乙酸的水溶液为流动相进行梯度洗脱,检测波长为233 nm)及磁固相萃取条件(洗脱剂为5 mL丙酮,萃取时间为4.5 min,吸附剂用量为60 mg,NaCl加入量为0.5 g,溶液pH值为3),在最佳条件下进行方法学考察,4种磺酰脲类除草剂均得到良好的线性关系,相关系数(r)≥0.998 0。方法的检出限(LOD,S/N=3)为0.28~0.77μg/L。将建立的方法用于3种环境水样中4种磺酰脲类除草剂的检测,其加标回收率为78.8%~109.7%。结果表明,制备的功能化复合材料结合了MIL-53(Fe)和Fe_3O_4的优点,可以简便快速地萃取分离环境水样中磺酰脲类除草剂。 相似文献
18.
建立了利用中空纤维三相液相微萃取-高效液相色谱联用技术(HF-LPME-HPLC)同时测定环境水中痕量麦草畏(dicamba)、氟草烟(fluroxypyr)、4-氯苯氧乙酸(4-CPA)、2甲4氯(MCPA)、2,4-滴(2,4-D)、2,4-滴苯氧丁酸(2,4-DB)和2甲4氯苯氧丁酸(MCPB)等7种苯氧羧酸类除草剂的分析方法。考察了萃取剂﹑接受相和给出相pH值、萃取时间﹑搅拌速度和盐效应等对检测的影响,通过正交试验优化萃取条件,得到的最佳萃取条件为正辛醇作萃取剂,给出相pH为3,接受相pH为12,萃取30 min,搅拌速度400 r/min。结果表明7种除草剂在较宽的线性范围内线性良好,相关系数为0.9953~0.9988,检出限(信噪比为3)为0.2~1.0 μg/L,富集倍数为76.7~121,加标回收率为68%~104%,相对标准偏差为3.2%~8.1%。该法灵敏度高、操作简单、检测快速、有机溶剂消耗少,为环境水样中痕量苯氧羧酸类除草剂残留的分析提供了有益的参考。 相似文献
19.
通过简单的搅拌共混方式制备了磁性氨基功能化的金属有机骨架化合物(MOFs)材料,得到的复合材料磁性和热稳定性良好,比表面积大,被用于不同极性防腐剂(苯甲酸、山梨酸、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯)的萃取。优化磁固相萃取及解吸条件后,将解吸液引入高效液相色谱-紫外检测分析仪器,采用Purospher? STAR LP C18色谱柱(250 mm×4.6 mm, 5μm)分离,以甲醇-10 mmol/L醋酸铵水溶液(50∶50, v/v)为流动相进行梯度洗脱。结果表明,目标防腐剂的检出限为0.51~1.89μg/L;苏打水、维生素饮料和方便面面饼中目标防腐剂的加标回收率为72.2%~109%。该方法简单快速,准确可靠,适用于饮料和食品中不同极性防腐剂的分析,为食品安全及质量监控提供了有效的技术有段。 相似文献
20.
采用乙腈提取、固相萃取(SPE)富集浓缩技术结合自行研制开发的毛细管液相色谱(CLC)仪,同时分离测定了食品和水样中1种有机磷和3种氨基甲酸酯类杀虫剂残留。对影响SPE效率和CLC分离检测的各类因素进行了优化,包括固相萃取柱种类、样品pH、洗脱剂种类和体积、上样速率、盐效应、上样体积、检测波长、流动相种类和比例等。结果表明,4种杀虫剂在6 min内达到完全分离,检出限为0.35~1.20 μg/kg,定量限为1.17~4.00 μg/kg。使用该SPE-CLC法对西红柿、黄瓜、苹果样品和自来水、湖水水样进行加标回收测定,得到食品中加标回收率为72.41%~107.15%,相对标准偏差≤8.12%;水样中加标回收率为71.45%~109.25%,相对标准偏差≤9.28%。该法能够满足农药多残留分析要求。 相似文献