首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to develop an automated sampling method to measure lovastatin in a conscious and freely moving rat. The blood samples were collected by means of the automated blood sampling system DR-II and the faecal samples were collected using a metabolic cage. The concentration of lovastatin was determined by a reversed-phase liquid chromatographic system with a UV absorbance detector. The mobile phase contained acetonitrile and 10 mm NaH2PO4 in the proportions 60:40 (v/v) with a flow-rate of 1 mL/min. The calibration curve was linear in concentration ranges of 0.05-100 and 0.1-100 microg/mL for lovastatin in blood and faecal samples, respectively. Following pharmacokinetic analysis, we identified that the maximum plasma concentration was around 1.18 +/- 0.08 microg/mL at concentration peak time 120 min and almost 78% of loading dose was accumulated in the faeces within 48 h after lovastatin administration (500 mg/kg, p.o.).  相似文献   

2.
The in vivo and in vitro metabolism of jatrorrhizine has been investigated using a specific and sensitive LC/MS/MS method. In vivo samples including rat feces, urine and plasma collected separately after dosing healthy rats with jatrorrhizine (34 mg/kg) orally, along with in vitro samples prepared by incubating jatrorrhizine with rat intestinal flora and liver microsome, respectively, were purified using a C(18) solid-phase extraction cartridge. The purified samples were then separated with a reversed-phase C(18) column with methanol-formic acid aqueous solution (70:30, v/v, pH3.5) as mobile phase and detected by on-line MS/MS. The structural elucidation of the metabolites was performed by comparing their molecular weights and product ions with those of the parent drug. As a result, seven new metabolites were found in rat urine, 13 metabolites were detected in rat feces, 11 metabolites were detected in rat plasma, 17 metabolites were identified in intestinal flora incubation solution and nine metabolites were detected in liver microsome incubation solution. The main biotransformation reactions of jatrorrhizine were the hydroxylation reaction, the methylation reaction, the demethylation reaction and the dehydrogenation reaction of parent drug and its relative metabolites. All the results were reported for the first time, except for some of the metabolites in rat urine.  相似文献   

3.
In vivo metabolism and pharmacokinetic studies on rat were conducted for ginsenoside Rh2, one of the components from ginseng that shows promise of anticancer activity. Liquid chromatography/mass spectrometry (LC/MS) and tandem mass spectrometry (MS/MS) with electrospray ionization were used to determine Rh2 and its metabolites in rat plasma, urine and feces. An average half-life of 16 min in plasma was obtained after intravenous administration to male Sprague-Dawley rats at 5 mg/kg. No Rh2 was detected in plasma samples collected from 0 to 24 h following oral administration at 100 mg/kg, and only 0.12-0.25% of the dosed amount was found in the feces samples collected from 0 to 48 h after oral administration at 100 mg/kg. Three metabolites of Rh2 were detected in the feces samples. Oxygenation and deglycosylation were found to be the major metabolic pathways of Rh2. Intense metabolism, rather than excretion, appears to be the reason for the fast clearance of this ginsenoside.  相似文献   

4.
In vivo and in vitro metabolism of scopolamine is investigated using a highly specific and sensitive liquid chromatography-mass spectrometry (LC-MSn) method. Feces, urine, and plasma samples are collected individually after ingestion of 55 mg/kg scopolamine by healthy rats. Rat feces and urine samples are cleaned up by a liquid-liquid extraction and a solid-phase extraction procedure (C18 cartridges), respectively. Methanol is added to rat plasma samples to precipitate plasma proteins. Scopolamine is incubated with homogenized liver and intestinal flora of rats in vitro, respectively. The metabolites in the incubating solution are extracted with ethyl acetate. Then these pretreated samples are injected into a reversed-phase C18 column with mobile phase of methanol-ammonium acetate (2 mM, adjusted to pH 3.5 with formic acid) (70:30, v/v) and detected by an on-line MSn system. Identification and structural elucidation of the metabolites are performed by comparing their changes in molecular masses (DeltaM), retention-times and full scan MSn spectra with those of the parent drug. The results reveal that at least 8 metabolites (norscopine, scopine, tropic acid, aponorscopolamine, aposcopolamine, norscopolamine, hydroxyscopolamine, and hydroxyscopolamine N-oxide) and the parent drug exist in feces after administering 55 mg/kg scopolamine to healthy rats. Three new metabolites (tetrahydroxyscopolamine, trihydroxy-methoxyscopolamine, and dihydroxy-dimethoxyscopolamine) are identified in rat urine. Seven metabolites (norscopine, scopine, tropic acid, aponorscopolamine, aposcopolamine, norscopolamine, and hydroxyscopolamine) and the parent drug are detected in rat plasma. Only 1 hydrolyzed metabolite (scopine) is found in the rat intestinal flora incubation mixture, and 2 metabolites (aposcopolamine and norscopolamine) are identified in the homogenized liver incubation mixture.  相似文献   

5.
A reversed phase gradient high performance liquid chromatographic method utilizing solid phase extraction has been described for the simultaneous determination of antipyrine (AP), 4-hydroxyantipyrine (4-OHAP), norantipyrine (NorAP) and 3-hydroxymethylantipyrine (3-OHMAP) in human urine after hydrolysis with beta-glucuronidase. The C-18 sorbent cartridges were conditioned and urine samples were applied, washed with 1 x 4 mL of phosphate buffer and eluted with 3 x 100 microL of 20% v/v of acetonitrile in methylene chloride. The eluent was evaporated to dryness, reconstituted in 100 microL phosphate buffer and injected. The calibration ranges were 2.0-250 micrograms/mL (AP), 2.5-250 micrograms/mL (NorAP), 2.0-250 micrograms/mL (3-OHMAP) and 5.0-500 micrograms/mL (4-OHAP) with regression coefficients of 0.998 or greater. Specificity was indicated by the absence of interferences in chromatogram of blank urine from normal as well as cirrhotic patients. The average recovery was 86.7% for AP, 90.5% for NorAP, 85.2% for 4-OHAP and 74.2% for 3-OHMAP. The within-assay precision as indicated by the reproducibility of the assayed spiked urine was less than 9% in all cases and the between-assay precision was less than 12%. The method was applied to studies on antipyrine metabolism in stable cirrhotic patients. Following administration of a single oral dose of about 1000 mg to nine stable cirrhotic patients and eight age-matched healthy volunteers, the cumulative account excreted in the urine up to 48 h for AP and the three metabolites was comparable to other literature reports.  相似文献   

6.
The aim of the present study was to characterize the excretion of pure vitexin‐4”‐O‐glucoside (VOG) in mice following oral and intravenous administration at a dose of 30 mg/kg. A sensitive and specific HPLC method with hespridin as internal standard, a Diamonsil C18 column protected with a KR C18 guard column and a mixture consisting of methanol–acetonitrile–tetrahydrofuran–0.1% glacial acetic acid (6:2:18:74, v/v/v/v) as mobile phase was developed and validated for quantitative analysis in biological samples. VOG could be excreted as prototype in excreta including urine and feces after both routes of administration, and the cumulative excretion of VOG was 24.31 ± 11.10% (17.97 ± 5.59% in urinary excretion; 6.34 ± 5.51% in fecal excretion) following oral dosing and 5.66 ± 3.94% (4.78 ± 3.13% in urinary excretion; 0.88 ± 0.81% in fecal excretion) following intravenous dosing. The results showed that the elimination of VOG after the two routes was fairly low, which meant that VOG was metabolized as other forms and the elimination after oral dosing was almost 4.3‐fold that after intravenous dosing. For both routes of administration, VOG excreted as prototype in urine was much more than that in feces, nearly 2.83‐fold for oral administration and 5.43‐fold for intravenous administration, which should be attributed to enterohepatic circulation. Taken together, renal excretion was the dominant path of elimination of VOG for oral and intravenous administration in mice and biliary excretion contributed less. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A new, rapid, and sensitive liquid chromatography with tandem mass spectrometry method was developed for the determination of vitisin B and validated in rat plasma and urine using carbamazepine as an internal standard. The plasma (0.05 mL) or urine (0.2 mL) samples were extracted by liquid–liquid extraction with ethyl acetate and separated on an Eclipse Plus C18 column (100 × 4.6 mm, 3.5 μm) with a mobile phase consisting of acetonitrile and 0.1% formic acid water (60:40, v/v) at a flow rate of 0.7 mL/min. Detection and quantification were performed by mass spectrometry in selected reaction‐monitoring mode with positive electrospray ionization. The calibration curves were recovered over the concentration ranges of 10?5000 ng/mL (correlation coefficients, r≥0.9833) in plasma and 5?2500 ng/mL (r≥0.9977) in urine, respectively. All validation data, including the specificity, precision, accuracy, recovery, and stability, conformed to the acceptance requirements. No matrix effects were observed. The developed method was successfully applied to pharmacokinetic studies of vitisin B following intravenous administration of 0.5 and 1 mg/kg and intraperitoneal injection of 5, 10, and 25 mg/kg to rats. This is the first report on the pharmacokinetic properties of vitisin B. The results provide a meaningful basis to evaluate preclinical or clinical applications of vitisin B.  相似文献   

8.
To analyze unbound cefamandole in rat blood, a method combing microdialysis with microbore liquid chromatography has been developed. A microdialysis probe was inserted into the jugular vein/right atrium of male Sprague-Dawley rats to examine the unbound cefamandole level in the rat blood following cefamandole administration (50 mg/kg, i.v.). The dialysates were directly submitted to a liquid chromatographic system. Samples were eluted with a mobile phase containing acetonitrile-methanol-100 mM monosodium phosphate (pH 5.0; 15:20:65, v/v). The UV wavelength was set at 270 nm for monitoring the analyte. Using the retrograde method, at infusion concentrations of 1 microg/mL of cefamandole, the in vivo microdialysis recoveries were 55.44% for the rat blood (n = 6). Intra- and inter-assay accuracy and precision of the analyses were < or = 10% in the range of 0.1-10 microg/mL. Pharmacokinetic parameters were calculated from the recovery-corrected dialysate concentrations of cefamandole vs time data. The elimination half-life (t1/2,beta) was 21.6 +/- 1.6 min. The results suggest that the pharmacokinetics of unbound cefamandole in blood following cefamandole administration (50 mg/kg, i.v., n = 5) fit best to the two-compartmental model.  相似文献   

9.
A high-performance liquid chromatography method is described for the determination of digoxin and its metabolites digoxigenin, digoxigenin monodigitoxoside, digoxigenin bis-digitoxoside and dihydrodigoxin (20S and 20R) excreted in urine and feces. The urine sample or fecal supernatant is extracted with methylene chloride in the presence of digitoxigenin or digitoxin as internal standard. Pre-column derivatization is achieved using 1-naphthoyl chloride with subsequent separation of the derivatized compounds on either a normal- or reversed-phase system with fluorescence detection. Recoveries for digoxin and all metabolites from fecal samples were in the range 60-74%, which is comparable to that previously determined for urine samples. Standard curve data revealed linearity over a wide range of concentrations. Coefficients of variation for the analysis were less than 10% for all compounds over a range of 5-125 ng per ml urine and 10-250 ng per 200 mg feces. Peaks for digoxin and metabolites in urine and feces were obtained when human excreta were analyzed.  相似文献   

10.
《Analytical letters》2012,45(16):2505-2517
The in vivo and in vitro metabolism of epiberberine was investigated using a highly specific and sensitive liquid chromatography–mass spectrometry (LC–MS/MS) method. In vivo samples including rat urine, feces, and plasma samples were collected individually after ingestion of 35 mg/kg epiberberine to healthy rats. In vitro samples were prepared by incubating epiberberine with homogenized liver and intestinal flora of rats, respectively. As a result, at least 17, 3 and 5 metabolites were found in rat urine, feces, and plasma, respectively. Additionally, 1 and 3 metabolites were found in the rat intestinal flora and homogenized liver incubation mixtures, respectively.  相似文献   

11.
The enantioselective analysis of hydroxychloroquine (HCQ) and its major metabolites was achieved by HPLC and solid-phase microextraction. The chromatographic separation was performed on a Chiralcel OD-H column using hexane/methanol/ethanol (96:2:2, v/v/v) plus 0.2% diethylamine as the mobile phase, at the flow rate of 1.3 mL/min. The main extraction parameters were optimized. The best condition was achieved by the addition of 10% NaCl and 1 mL phosphate buffer 1 mol/L pH 11 to 3 mL human urine. The extraction was conducted for 40 min at 25 degrees C and the desorption time was 3 min using methanol (100%). PDMS-DVB 60 microm fiber was used in this study. The mean recoveries were 9.3, 9.2, and 14.4% for HCQ, desethylhydroxychloroquine (DHCQ), and desethylchloroquine (DCQ), respectively. The method was linear over the range of 50-1000 ng/mL for HCQ enantiomers and over the range of 42-416 ng/mL for DCQ and DHCQ enantiomers. Within-day and between-day precision and accuracy assays for HCQ and its metabolites were lower than 15%. The preliminary 48 h urinary excretion study performed in human urine showed to be stereoselective. The amount of (+)-(S)-enantiomer excreted was higher than its antipode.  相似文献   

12.
A rapid, sensitive, and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) method for the determination of udenafil and its active metabolite, DA-8164, in human plasma and urine using sildenafil as an internal standard (IS) was developed and validated. Udenafil, DA-8164 and IS from a 100 microL aliquot of biological samples were extracted by protein precipitation using acetonitrile. Chromatographic separation was carried on an Acquity UPLC BEH C(18) column (50 x 2.1 mm, i.d., 1.7 microm) with an isocratic mobile phase consisting of acetonitrile and containing 0.1% formic acid (75:25, v/v) at flow rate of 0.4 mL/min, and total run time was within 1 min. Detection and quantification was performed by the mass spectrometer using multiple reaction-monitoring mode at m/z 517 --> 283 for udenafil, m/z 406 --> 364 for DA-8164 and m/z 475 --> 100 for IS. The assay was linear over a concentration range of 1-600 ng/mL with a lower limit of quantification of 1 ng/mL in both human plasma and urine. The coefficient of variation of this assay precision was less than 13.7%, and the accuracy exceeded 92.0%. This method was successfully applied for pharmacokinetic study after oral administration of udenafil 100 mg to healthy Korean male volunteers.  相似文献   

13.
A high performance liquid chromatographic method (HPLC), together with solid phase extraction (SPE), was developed for simultaneous determination of albiflorin and paeoniflorin in rat urine after oral administration of Si-Wu decoction. The samples were pretreated with solid phase extraction using Extract-Cleantrade mark cartridges. Analysis of the extract was performed on a reversed-phase C18 column and a mobile phase made up of acetonitrile and 0.03% formic acid (17:83, v/v). UV detection was set at 230 nm. The assay was linear over the range 2.625-52.50 mg/mL for albiflorin and 3.875-77.50 microg/mL for paeoniflorin. The average percentage recoveries of three spiked urines were 97.01 +/- 3.32 and 102.32 +/- 6.97 for albiflorin and paeoniflorin, respectively. The intra-day precision (RSD) ranged from 0.21 to 1.79% at concentrations of 4.20, 10.50, 26.25 and 39.375 microg/mL of albiflorin and 0.12 to 2.92% at concentrations of 3.875, 10.85, 23.25 and 58.125 microg/mL of paeoniflorin, and inter-day precision (RSD) was from 1.02 to 1.86% for albiflorin and 0.94 to 3.30% for paeoniflorin, at the same four concentrations. This method was applied in order to analyze albiflorin and paeoniflorin in rat urine following oral administration of traditional Chinese medicinal preparation of Si-Wu decoction.  相似文献   

14.
BMS-378806 is a human immunodeficiency virus (HIV) entry inhibitor that is being developed for the oral treatment of HIV infection. Human plasma and urine LC/MS/ MS methods have been developed and validated for the quantitation of BMS-378806. For human plasma method, methyl t-butyl ether was used to extract BMS-378806 from plasma in a 96-well format, and the organic layers were dried down and then reconstituted for the injection, while a dilute-and-shoot approach was used for human urine method in a 96-well format. Chromatographic separation was achieved isocratically on a Phenomenex C18 (2) Luna column (2 x 50 mm2, 5 microm). The mobile phase contained 60:40 v/v of 0.1% formic acid in water and ACN. Detection was by positive ion electrospray MS/MS. The standard curves ranged from 1.25 to 1000 ng/mL for the plasma assay and from 10 to 5000 ng/mL for the urine assay. The curves were fitted to a 1/x2 weighted quadratic regression model for both methods. The validation results demonstrated that both methods had satisfactory precision and accuracy across the calibration ranges. The methods were applied to the analysis of human plasma and urine samples from a single ascending dose clinical study to assess the pharmacokinetics of the drug. The pharmacokinetic analysis results indicated the absorption and disposition of the drug was rapid. The systemic exposure of BMS-378806 was generally dose proportional among the doses from 100 to 1200 mg, but not dose proportional to 1600 mg. There were modest increases in the systemic exposure when the drug was given with food or given as a solution formulation. Renal excretion was not a substantial elimination pathway of the drug. BMS378806 was safe and well tolerated over a dose range of 100-1600 mg administered as a single oral dose.  相似文献   

15.
A simple and rapid liquid chromatography with tandem mass spectrometry method has been developed and validated for the determination of rabeprazole and its two active metabolites, rabeprazole thioether and desmethyl rabeprazole thioether, in human urine using donepezil as the internal standard. The sample preparation procedure involved a simple dilution of urine sample with methanol (1:3, v/v). The chromatographic separation was achieved on a Hedera ODS‐2 C18 column using a mixture of methanol/10 mmol/L ammonium acetate solution (containing 0.05% formic acid; 55:45, v/v) as the mobile phase. The method was validated over the concentration ranges of 0.15–100 ng/mL for rabeprazole, 0.30–400 ng/mL for rabeprazole thioether, and 0.05–100 ng/mL for desmethyl rabeprazole thioether. The established method was highly sensitive with a lower limit of quantification of 0.15 ng/mL for rabeprazole, 0.30 ng/mL for rabeprazole thioether, and 0.05 ng/mL for desmethyl rabeprazole thioether. The intra‐ and interbatch precision was <4.5% for the low, medium, and high quality control samples of all the analytes. The recovery of the analytes was in the range 95.4–99.0%. The method was successfully applied to a urinary excretion profiles after intravenous infusion administration of 20 mg rabeprazole sodium in healthy volunteers.  相似文献   

16.
A simple, specific and sensitive HPLC method has been developed for the determination of metoprolol in human plasma and urine. Separation of metoprolol and atenolol (internal standard) was achieved on an Ace C18 column (5 μm, 250 mm×4.6 mm id) using fluorescence detection with λex=276 nm and λem=296 nm. The mobile phase consists of methanol–water (50:50, v/v) containing 0.1% TFA. The analysis was performed in less than 10 min with a flow rate of 1 mL/min. The assay was linear over the concentration range of 3 – 200 and 5 – 300 ng/mL for plasma and urine, respectively. The LOD were 1.0 and 1.5 ng/mL for plasma and urine, respectively. The LOQ were 3.0 and 5.0 ng/mL for plasma and urine, respectively. The extraction recoveries were found to be 95.6 ± 1.53 and 96.4 ± 1.75% for plasma and urine, respectively. Also, the method was successfully applied to three patients with hypertension who had been given an oral tablet of 100 mg metoprolol.  相似文献   

17.
18.
肖晓峰  王建玲  刘艇飞  何军  陈彤  王吉 《色谱》2019,37(12):1383-1391
建立了高效液相色谱-紫外检测(HPLC-UV)法快速测定从塑料类食品接触材料及制品迁移至10%(v/v)乙醇、3%(m/v,即3 g/100 mL)乙酸、4%(v/v)乙酸、20%(v/v)乙醇、50%(v/v)乙醇、95%(v/v)乙醇和橄榄油7种食品模拟物中对苯二甲酸二甲酯、对苯二甲酸二辛酯、苯甲酸甲酯、苯甲酸乙酯、苯甲酸丙酯、苯甲酸丁酯和新戊二醇二苯甲酸酯的特定迁移量。考察了多种提取溶剂、QuEChERS dSPE EMR-Lipid试剂盒和Captiva EMR-Lipid试剂盒对橄榄油食品模拟物中7种对苯二甲酸酯或苯甲酸酯的提取或净化效果。以甲醇和水为流动相进行梯度洗脱,7种对苯二甲酸酯或苯甲酸酯在苯基柱上于17 min内达到基线分离。检测波长为237 nm,进样量为10 μL。7种对苯二甲酸酯或苯甲酸酯在7种食品模拟物中的定量限为0.2~8.1 mg/kg、1~80 mg/L或8~160 mg/kg,相关系数r≥0.9998。在2或8、60、80或160 mg/kg 3个加标水平的回收率为91.7%~106%,相对标准偏差为0.1%~3.1%。该方法样品前处理简便,色谱分离和线性关系好,回收率和重复性较好,已应用于实际样品的检测。  相似文献   

19.
l ‐Isocorypalmine, an active alkaloid compound isolated from Rhizoma Corydalis yanhusuo, has been reported to possess biological activity for treating cocaine use disorder. A high‐performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry method was established for identification of the metabolites of l ‐isocorypalmine in urine, plasma and feces samples of rats after a single intragastric gavage of l ‐isocorypalmine at a dose of 15 mg/kg. As a result, a total of 21 metabolites (six phase ? metabolites and fifteen phase II metabolites) were detected and tentatively identified by mass spectrometry and fragment ions from tandem mass spectrometry spectra. All metabolites were present in the urine samples, nine metabolites were found in the plasma samples and three metabolites were found in the feces samples. Results indicated that metabolic pathways of l ‐isocorypalmine included oxidation, dehydrogenation, demethylation, sulfate conjugation, and glucuronide conjugation. In addition, glucuronidation was the major metabolic reaction. Results of this investigation could provide significant experimental basis for efficacy, safety and action mechanism of l ‐isocorypalmine, which will be advantageous to new drug development for treating cocaine addiction.  相似文献   

20.
MK-0767, 5-[2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethyl)phenyl]methyl]benzamide (I, Table 1), is a dual peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist previously studied for the treatment of type 2 diabetes and dyslipidemia. To support further toxicological studies in one of the animal species used in chronic testing of I, a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the simultaneous quantification of I and seven metabolites in rat urine was developed and validated. In this method, urine samples were diluted with acetonitrile/methanol (50:50, v/v) and injected directly onto the column of an LC system. Detection was achieved by MS/MS using a turbo ion spray probe monitoring precursor --> product ion combinations in selected reaction monitoring (SRM) mode. The linear range for I and three metabolites was 0.8-800 ng/mL, and 8-8000 ng/mL for four other metabolites found to be present in urine at higher concentrations than I. Intra-day and inter-day variation using this method were < or = 13.0%. The method exhibited good linearity, reproducibility, specificity and sufficient sensitivity when used for the analysis of rat urine samples. Concentrations of I and its major metabolites in rat urine were determined in samples collected between 0-24 h after dosing on the last day of administration of nine daily oral doses to three male (1000 mg/kg/day) and three female (300 mg/kg/day) Sprague-Dawley rats. The urinary concentrations of I and its metabolites were similar in male and female rats. The average concentrations of I were 0.51 and 0.33 microg/mL in male and female rats, respectively. Concentrations of four of the seven metabolites quantified were 6- to 45-fold higher than those of I. The most abundant metabolite, with concentrations of 24.2 and 13.3 microg/mL in male and female rat urine, respectively, was a methyl sulfoxide derivative formed by oxidative cleavage of the thiazolidinedione ring, followed by S-methylation and oxidation of the sulfide intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号