首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown that the mixing of lepton doublets of the Standard Model can yield sizable contributions to the lepton asymmetry, that is generated through the decays of right-handed neutrinos at finite temperature in the early Universe. When calculating the flavour-mixing correlations, we account for the effects of Yukawa as well as of gauge interactions. We compare the freeze-out asymmetry from lepton-doublet mixing to the standard contributions from the mixing and direct decays of right-handed neutrinos. The asymmetry from lepton mixing is considerably large when the mass ratio between the right-handed neutrinos is of order of a few, while it becomes Maxwell-suppressed for larger hierarchies. For an intermediate range between the case of degenerate right-handed neutrinos (resonant leptogenesis) and the hierarchical case, lepton mixing can yield the main contribution to the lepton asymmetry.  相似文献   

2.
For standard leptogenesis from the decay of singlet right-handed neutrinos, we derive source terms for the lepton asymmetry that are present in a finite density background but absent in the vacuum. These arise from cuts through the vertex correction to the decay asymmetry, where in the loop either the Higgs boson and the right-handed neutrino or the left-handed lepton and the right-handed neutrino are simultaneously on-shell. We evaluate the source terms numerically and use them to calculate the lepton asymmetry for illustrative points in parameter space, where we consider only two right-handed neutrinos for simplicity. Compared to calculations where only the standard cut through the propagators of left-handed lepton and Higgs boson is included, sizable corrections arise when the masses of the right-handed neutrinos are of the same order, but the new sources are found to be most relevant when the decaying right-handed neutrino is heavier than the one in the loop. In that situation, they can yield the dominant contribution to the lepton asymmetry.  相似文献   

3.
We propose a new model for naturally realizing light Dirac neutrinos and explaining the baryon asymmetry of the universe through neutrinogenesis. To achieve these, we present a minimal construction which extends the Standard Model with a real singlet scalar, a heavy singlet Dirac fermion and a heavy doublet scalar besides three right-handed neutrinos, respecting lepton number conservation and a Z2Z2 symmetry. The neutrinos acquire small Dirac masses due to the suppression of weak scale over a heavy mass scale. As a key feature of our construction, once the heavy Dirac fermion and doublet scalar go out of equilibrium, their decays induce the CP asymmetry from the interference of tree-level processes with the radiative vertex corrections (rather than the self-energy corrections). Although there is no lepton number violation, an equal and opposite amount of CP asymmetry is generated in the left-handed and the right-handed neutrinos. The left-handed lepton asymmetry would then be converted to the baryon asymmetry in the presence of the sphalerons, while the right-handed lepton asymmetry remains unaffected.  相似文献   

4.
We investigate baryogenesis in the νMSM which is the Minimal Standard Model (MSM) extended by three right-handed neutrinos with Majorana masses being smaller than the weak scale. In this model three sterile neutrinos, which are almost right-handed states, play important roles in cosmology. The baryon asymmetry of the universe (BAU) is generated via mechanism through flavor oscillation between two sterile neutrinos N2 and N3 which are degenerate in masses. We consider the case when BAU is solely originated from the CP violating phases in the mixing matrix of active neutrinos, i.e., the Dirac phase δ and the Majorana phase η, and study how BAU depends on these CP violating phases.  相似文献   

5.
We describe a "neutrinogenesis" mechanism whereby, in the presence of right-handed neutrinos with sufficiently small pure Dirac masses, (B+L)-violating sphaleron processes create the baryon asymmetry of the Universe, even when B = L = 0 initially. It is shown that the resulting neutrino mass constraints are easily fulfilled by the neutrino masses suggested by current experiments. We present a simple toy model which uses this mechanism to produce the observed baryon asymmetry of the Universe.  相似文献   

6.
The energy levels of the left- and the right-handed neutrinos are split in the background of gravitational waves generated during inflation, which, in presence of lepton-number-violating interactions, gives rise to a net lepton asymmetry at equilibrium. Lepton number violation is achieved by the same dimension five operator which gives rise to neutrino masses after electroweak symmetry breaking. A net baryon asymmetry of the same magnitude can be generated from this lepton asymmetry by electroweak sphaleron processes.  相似文献   

7.
We study magnetic dipole moments of right-handed neutrinos in a keV neutrino dark matter model. This model is a simple extension of the standard model with only right-handed neutrinos and a pair of charged particles added. One of the right-handed neutrinos is the candidate of dark matter with a keV mass. Some bounds on the dark matter magnetic dipole moment and model parameters are obtained from cosmological observations.  相似文献   

8.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

9.
Successful leptogenesis within the simplest type I supersymmetric seesaw mechanism requires the lightest of the three right-handed neutrino supermultiplets to be heavier than approximately 10(9) GeV. Thermal production of such (s)neutrinos requires very high reheating temperatures which result in an overproduction of gravitinos with catastrophic consequences for the evolution of the Universe. In this Letter, we let R parity be violated through a lambda(i)N(i)H(u)H(d) term in the superpotential, where N(i) are right-handed neutrino supermultiplets. We show that in the presence of this term, the produced lepton-antilepton asymmetry can be enhanced. As a result, even for N1 masses as low as 10(6) GeV or less, we can obtain the observed baryon asymmetry of the Universe without gravitino overproduction.  相似文献   

10.
A brief review for particle physicists on the cosmological impact of neutrinos and on restrictions on neutrino properties from cosmology is given. The paper includes a discussion of upper bounds on neutrino mass and possible ways to relax them, methods to observe the cosmic-neutrino background, bounds on the cosmological lepton asymmetry which are strongly improved by neutrino oscillations, cosmological effects of breaking of the spin-statistics theorem for neutrinos, bounds on mixing parameters of active and possible sterile neutrinos with account of active-neutrino oscillations, bounds on right-handed currents and neutrino magnetic moments, and some more. The text was submitted by the authors in English.  相似文献   

11.
The neutrino asymmetry, \({n_v} - {n_{\bar v}}\), in the plasma of the early Universe generated both before and after the electroweak phase transition (EWPT) is calculated. It is well known that in the Standard Model the leptogenesis before the EWPT, in particular, for neutrinos, owes to the Abelian anomaly in a massless hypercharge field. At the same time, the generation of neutrino asymmetry in the Higgs phase after the EWPT has not been considered previously due to the absence of any quantum anomaly in an external electromagnetic field for such electroneutral particles as neutrinos, in contrast to the Adler anomaly for charged left- and right-handed massless electrons in the same electromagnetic field. Using the Boltzmann equation for neutrinos modified to include the Berry curvature term in momentum space, we establish a violation of the macroscopic neutrino current in the plasma after the EWPT and exactly reproduce the non-conservation of the lepton current in the symmetric phase before the EWPT that owes to the contribution of the triangle anomaly in an external hypercharge field but already without computing the corresponding Feynman diagrams. We apply the new kinetic equation to calculate the neutrino asymmetry by taking into account the Berry curvature and the electroweak interaction with plasma particles in the Higgs phase, including that after the neutrino decoupling in the absence of their collisions in the plasma. We find that this asymmetry is too small for observations. Thus, a difference between the relic neutrino and antineutrino densities, if it exists, must appear already in the symmetric phase of the early Universe before the EWPT.  相似文献   

12.
Leptogenesis is usually realized through decays of heavy particles. In this Letter we consider another possibility of generating a lepton asymmetry through annihilations of heavy particles. We demonstrate our idea with a realistic extension of the standard model containing a heavy doublet and a light singlet scalars in addition to right-handed neutrinos and Higgs triplets required for type-I + II seesaw of neutrino masses. We also clarify that this annihilating leptogenesis scenario can be naturally embedded in more fundamental theories, like left–right symmetric models or grand unified theories.  相似文献   

13.
If the baryon asymmetry of the Universe is produced by leptogenesis, CP violation is required in the lepton sector. In the seesaw extension of the standard model with three hierarchical right-handed neutrinos, we show that the baryon asymmetry is insensitive to the Pontecorvo-Maki-Nagakawa-Sakata phases: thermal leptogenesis can work for any value of the observable phases. This result was well known when there were no flavor effects in leptogenesis; we show that it remains true when flavor effects are included.  相似文献   

14.
Heavy right-handed neutrinos are of current interest. The interactions and decay of such neutrinos determine their decoupling epoch during the evolution of the universe. This in turn affects various observable features like the energy density, nucleosynthesis, CMBR spectrum, galaxy formation and baryogenesis. Here, we consider reduction of right-handed electron-type Majorana neutrinos, in the left–right symmetric model, by the channel and the channel originating from an anomaly, involving the gauge group, as well as decay of such neutrinos. We study the reduction of these neutrinos for different ranges of left–right model parameters, and find that, if the neutrino mass exceeds the right-handed gauge boson mass, then the neutrinos never decouple for realistic values of the parameters, but, rather, decay in equilibrium. Because there is no out-of-equilibrium decay, no mass bounds can be set for the neutrinos. Received: 1 November 2000 / Published online: 23 February 2001  相似文献   

15.
The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter–antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.  相似文献   

16.
We adapt the type II seesaw mechanism to the framework of the 3-3-1 model with right-handed neutrinos. We emphasize that the mechanism is capable of generating small masses for the left-handed and right-handed neutrinos and the structure of the model allows that both masses arise from the same Yukawa coupling. For typical values of the free parameters of the model we may obtain at least one right-handed neutrino with mass in the keV range. Right-handed neutrino with mass in this range is a viable candidate for the warm component of the dark matter existent in the universe.  相似文献   

17.
We discuss the problem of baryon number generation in the framework of a class of SO(10) grand unified models with an intermediate mass scale. In these theories the neutrino mass spectrum allows for the τ neutrino to be a good candidate for the hot component of the dark matter and, at the same time, an implementation of the MSW mechanism is possible. We show that an adequate matter-antimatter asymmetry is achievable through the interplay of BL violating decays of scalar bosons into massive right-handed neutrinos with the anomalous B+L violating processes mediated by sphalerons.  相似文献   

18.
We investigate baryogenesis in the ν  MSM, which is the Minimal Standard Model (MSM) extended by three right-handed neutrinos with Majorana masses smaller than the weak scale. In this model the baryon asymmetry of the universe (BAU) is generated via flavour oscillation between right-handed neutrinos. We consider the case when BAU is solely originated from the CP violation in the mixing matrix of active neutrinos. We perform analytical and numerical estimations of the yield of BAU, and show how BAU depends on mixing angles and CP violating phases. It is found that the asymmetry in the inverted hierarchy for neutrino masses receives a suppression factor of about 4% comparing with the normal hierarchy case. It is, however, pointed out that, when θ13=0θ13=0 and θ23=π/4θ23=π/4, baryogenesis in the normal hierarchy becomes ineffective, and hence the inverted hierarchy case becomes significant to account for the present BAU.  相似文献   

19.
The left-right symmetric model with doublet and bi-doublet Higgs scalars can accommodate linear, inverse or double seesaw for generating small neutrino masses in the presence of three singlet fermions. If the singlet fermions have small Majorana masses, they can form three pairs of quasi-degenerate Majorana fermions with three right-handed neutrinos. The decays of the quasi-degenerate Majorana fermions can realize the resonant leptogenesis. Alternatively, the right-handed neutrinos can obtain seesaw suppressed Majorana masses if the singlet fermions are very heavy. In this case leptogenesis, with or without resonant effect, is allowed in the decays of the right-handed neutrinos.  相似文献   

20.
We consider type I + II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos m(v) and the Dirac-type Yukawa couplings to be known, we find the triplet Yukawa coupling matrix f, which carries the information about the masses and mixing of the right-handed neutrinos. We show that in this case there exists a duality: for any solution f, there is a dual solution [symbol: see text] = m(v)/nu(L) - f, where nu(L) is the vacuum expectation value of the triplet Higgs boson. Thus, unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix f. For n lepton generations the number of solutions is 2(n). We develop an exact analytic method of solving the seesaw nonlinear matrix equation for f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号