首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe here the synthesis of 10 nm, monodisperse, iron oxide nanoparticles that we have coated with temperature-sensitive, biotinylated p(NIPAAm) (b-PNIPAAm). The PNIPAAm was prepared by the reversible addition fragmentation chain transfer polymerization (RAFT), and one end was biotinylated with a PEO maleimide-activated biotin to form a stable thioether linkage. The original synthesized iron oxide particles were stabilized with oleic acid. They were dispersed in dioxane, and the oleic acid molecules were then reversibly exchanged with a mixture of PNIPAAm and b-PNIPAAm at 60 degrees C. The b-PNIPAAm-coated magnetic nanoparticles were found to have an average diameter of approximately 15 nm by dynamic light scattering and transmission electron microscopy. The ability of the biotin terminal groups on the b-PNIPAAm-coated nanoparticles to interact with streptavidin was confirmed by fluorescence and surface plasmon resonance. It was found that the b-PNIPAAm-coated iron oxide nanoparticles can still bind with high affinity to streptavidin in solution or when the streptavidin is immobilized on a surface. We have also demonstrated that the binding of the biotin ligands on the surface of the temperature-responsive magnetic nanoparticles to streptavidin can be turned on and off as a function of temperature.  相似文献   

2.
Photoactive TiO(2) can be used to mediate a variety of disinfection processes. It was postulated that TiO(2) particles could be directed to specific targets of interest using biotin/streptavidin linkages. Biotinylated TiO(2) nanoparticles (anatase) were obtained by treating TiO(2) nanoparticles with 3-aminopropyltriethoxysilane (APTS) in anhydrous DMSO, followed by reaction with N-hydroxysuccinimidobiotin. 29Si CP-MAS NMR, 13C CP-MAS NMR, and FTIR spectra showed that biotin was covalently bound to the TiO(2) surface. Transmission electron microscopy (TEM) demonstrated that prolonging the silanization reaction times led to increasingly thick silsesquioxane coating layers of up to approximately 10 nm. The specific surface area (SSA) of the TiO2 particles decreased from 16 m(2) g(-1) before treatment to 9.1 m(2) g(-1) after aminosilanization and to 8.4 m(2) g(-)1 after biotinylation, as measured by nitrogen adsorption. Amino surfaces modified for 4, 16, and 26 h had total amino group densities ranging from 2.9 to 26 to 66 nm(-2), respectively, whereas accessible surface amino group densities ranged from 2.7 to 10 to 17 nm(-2) as shown from nitrogen adsorption, polyelectrolyte titration, conductometric titration, and biotin assays. Not all the amino groups were accessible for biotinylation: the densities of active biotin were found to be 2.1, 7.0, and 11.5 nm(-2). The ability of the attached biotin to bind to streptavidin was demonstrated by confocal microscopy with the use of fluorescently labeled streptavidin-FITC. Although streptavidin was readily able to bind to biotinylated TiO(2) particles, it did not act as a strong flocculating agent for the biotinylated TiO2 particles. The implications of these observations, with respect to particle accessibility to tethered streptavidin, are discussed.  相似文献   

3.
Compared are two approaches for the biotinylation of poly(N-isopropylacrylamide-co-vinylacetic acid) microgels, 300-nm diameter, water swollen particles with a corona of carboxyl groups. The biotinylated microgels are a platform for bioactive water-based ink. Streptavidin binding was measured as a function of biotin density, and the results were interpreted with a new model that predicts the minimum local density of biotins required to capture a streptavidin. An amino-polyethylene glycol derivative of biotin gave higher biotin contents than a biotin hydrazide. However, the streptavidin content versus biotin content results for both biotin derivatives fell on the same master curve with maximum biotin coverage of 0.11?mg of bound streptavidin per milligram of biotinylated microgel. Exclusion experiments showed that streptavidin was too big to penetrate the cross-linked microgel structure; thus, the conjugated streptavidin was restricted to the microgel surface. The colloidal stability of the microgels was preserved, and the biotinylated products showed good hydrolytic stability.  相似文献   

4.
In an effort toward determining the feasibility of single molecule analysis, we describe a case whereby the binding of one biotinylated DNA to one streptavidin molecule via electrostatic interactions was controlled by altering in pH 4.0-9.0 and 0.16 of the ion strength. The quantitative analysis of immobilized probe ssDNA was realized in real-time via a quartz crystal microbalance (QCM) and electrochemical (EC) measurement in the range 100 pM to 50 μM of probe oligonucleotide concentration. The variation amount of biotinylated ssDNA immobilized on the streptavidin-modified surface at pH 7.5 was about 0.16 pmol, giving a ratio of streptavidin to biotinylated ssDNA of about 1:1.1. On the other hand, at pH 4.9, it was immobilized about 0.29 pmol. From the shape of the Langmuir plot and QCM, the immobilization efficiency of biotinylated DNA via streptavidin at pH 4.9 was approximately twofold that at pH 7.5. In view points of the reaction velocity, it was increased with decreasing buffer solution pH, indicating a strong interaction of negatively charged probe DNA with the positively charged streptavidin. And also the EC response value of ΔI/Istreptavidin for the immobilized biotinylated ssDNA in pH 4.9 was about 49%, while the corresponding value for the pH 7.5 was approximately 34%. As DNA molecules possess negative charges, electrostatic repulsion occurred between streptavidin and biotinylated ssDNA at pH 7.5. At pH 4.9, the attraction between the biotinylated ssDNA and streptavidin resulted in increased adsorption which has an isoelectric point of about 5.9. It was deduced that the binding of biotinylated ssDNA to one or two of the four binding sites of streptavidin can be controlled by adjusting the pH-controlled electrostatic interaction.  相似文献   

5.
制备了一种能固载目标蛋白质, 却没有非特异性蛋白质吸附的高分子涂层. 该涂层是可生物降解的油水两亲性的三嵌段聚合物, 即生物素偶联的聚乙二醇-聚丙交酯-聚赖氨酸共聚物. 将高分子溶解于N,N-二甲基甲酰胺中, 并涂布在预先包被了聚赖氨酸的脱脂玻片基质上, 形成高分子涂层, 在其表面包被一层由明胶和聚N-乙烯基吡咯烷酮组成的封闭剂. 使用酶标免疫分析法, 对高分子涂层表面的生物活性进行评价. 依次将辣根过氧化物酶标记的链亲和素和生物素偶联的小鼠球蛋白抗原和碱性磷酸酯酶标记的马抗小鼠抗体固载在高分子涂层表面上, 通过标记酶与底物作用生色. 分析结果表明, 经过封闭以后, 生物素化的高分子涂层表面能够排斥非特异性的蛋白质; 同时特异性蛋白质之间(如生物素和链亲和素之间、抗原和抗体之间)的相互作用依然保留, 并且固定在表面的蛋白质依然保留其生物活性. 因此生物素化的聚乙二醇-聚丙交酯-聚赖氨酸三嵌段高分子可以作为生物活性材料, 用于蛋白质固载和蛋白质分离及分析.  相似文献   

6.
A streptavidin–luciferase fusion protein comprising the thermostable mutant form of firefly luciferase Luciola mingrelica and minimal core streptavidin was constructed. The streptavidin–luciferase fusion was mainly produced in a tetrameric form with high luciferase and biotin‐binding activities. It was shown that fusion has the same Km values for ATP and luciferin and the bioluminescence spectra as initial luciferase. The linear dependence of the bioluminescence signal on the content of the fusion was observed within the range of 10?18–10?13 mol per well. Successful application of obtained fusion in a biospecific bioluminescence assay based on biotin–streptavidin interactions was demonstrated by the example of a specific DNA hybridization analysis. A DNA hybridization analysis for Escherichia coli cells identification was developed using unique for these cells gadB fragment encoding glutamate decarboxylase. The amplified biotinylated GadB fragments were hybridized with the immobilized oligonucleotide probes; then, the biotin in the DNA duplexes was detected using the streptavidin–luciferase fusion protein. To reach the high sensitivity of the assay, we optimized the conditions of the assay. It was shown that the use of Pluronic for plate modification resulted in a significant reduction in the DNA detection limit which finally was 0.4 ng per well.  相似文献   

7.
In the present work, we describe the properties of a bifunctional redox-labeled bioconjugate at electrode surfaces mediating the electron transfer across the electrode-electrolyte interface. We show that the assembly of ferrocene-labeled streptavidin on biotinylated electrodes results in a reproducible unidirectional current flow in the presence of electron donors in solution. Such rectifying films were built up by spontaneous binding of tetrameric streptavidin molecules to biotin centers immobilized on the electrode surface. Due to the high affinity of biotin to streptavidin, such bifunctional films completely bind any biotinylated compounds. The charge transport between donors in solution and the Au electrode is mediated by the ferrocene moieties, allowing us to develop a molecular rectifier. Our experimental results suggest that such redox-labeled proteins with a high binding capacity constitute a promising alternative to organic compounds used in molecular electronics.  相似文献   

8.
使用生物分子相互作用分析(Biomolecular interaction analysis,BIA)技术实时监测了在链霉素和素表面层层组装亲和素-生物素化抗体多层膜的过程,结果表明,通过链霉素和素与生物素之间的强亲和作用,能够在表面形成均一的多层膜,并用实时BIA技术求得了每层蛋白质的表面浓度,对于生物素化抗体,单层吸附表面浓度为1.32ng/mm^2;对于链霉亲和素,单层吸附表面浓度为2.93ng/mm^2。同时对蛋白质在表面的排列状态进行了探讨。  相似文献   

9.
Chemically selective liposomal surface functionalization and liposomal microarray fabrication using azide-reactive liposomes are described. First, liposome carrying PEG-triphenylphosphine was prepared for Staudinger ligation with azide-containing biotin, which was conducted in PBS buffer (pH 7.4) at room temperature without a catalyst. Then, immobilization and microarray fabrication of the biotinylated liposome onto a streptavidin-modified glass slide via the specific streptavidin/biotin interaction were investigated by comparing with directly formed biotin-liposome, which was prepared by the conventional liposome formulation of lipid-biotin with all other lipid components. Next, the covalent microarray fabrication of liposome carrying triphenylphosphine onto an azide-modified glass slide and its further glyco-modification with azide-containing carbohydrate were demonstrated for glyco-liposomal microarray fabrication via Staudinger ligation. Fluorescence imaging confirmed the successful immobilization and protein binding of the intact immobilized liposomes and arrayed glyco-liposomes. The azide-reactive liposome provides a facile strategy for membrane-mimetic glyco-array fabrication, which may find important biological and biomedical applications such as studying carbohydrate-protein interactions and toxin and antibody screening.  相似文献   

10.
We report here the preparation of novel biotinylated glyconanoparticles from well-defined biotinylated glycopolymers and poly(N-isopropylacrylamide) (PNIPAAm) synthesized via the reversible addition fragmentation chain transfer (RAFT) polymerization process. The in situ reduction of the biotinylated glycopolymers, PNIPAAm, poly(ethylene glycol), and HAuCl4 via a photochemical process resulted in the formation of biotinylated gold nanoparticles. The multifunctional biotinylated glyconanoparticles were then evaluated for their bioconjugation toward streptavidin using UV-vis spectroscopy and surface plasmon resonance (SPR). The biotinylated nanoparticles underwent aggregation in the presence of streptavidin as revealed by spectrophotometry, which indicates the accessibility of the biotin for conjugation. These results were further confirmed by surface plasmon resonance even in the case of surface-immobilized streptavidin.  相似文献   

11.
Micrometer-sized Fe3O4 particles and nano-sized gold particles were first synthesized by methods of self-aggregation of surface-chemically modified Fe3O4 nanoparticles and citrate reduction of the Au3 to Au0, respectively. Interaction between these two types of particles resulted in the assembly of nano-sized gold particles on the surface of the micrometer-sized Fe3O4 particles, forming an assembled structure with the Fe3O4 core particles around which are attached nano-sized gold parti- cles. The Fe3O4/Au structure is named GoldMag particles with assembled structure. The synthetic process, structure, and magnetic property of the GoldMag particles were analyzed. GoldMag particles with assembled structure have an irregular shape, rough surface with a diameter of 2―3 μm. These particles exhibit the superparamagnetic property with saturated magnetization of 41 A·m2/kg. In a single step, antibodies could be readily immobilized onto the surface of the particles with a high binding capacity. The GoldMag particles can be used as a novel carrier in immunoassays. The maximum quantity of human IgG immobilized onto GoldMag particles was 330 μg/mg. In order to validate the quality of the GoldMag particles as immunoassay carriers, an immunoassay system was used. The relative amount of immobilized human IgG was measured by HRP-labeled anti human IgG. The coefficient of variation within parallel samples of each group was below 6% and the coefficient of variation of means between five groups carried out separately was below 7%. Based on the sandwich method, the Hepatitis B surface antigen (HBsAg) and interleukin-8 (IL-8) were also analyzed by qualitative and quantitative detection, respectively. The result indicated that the GoldMag particles with assembled structure were an ideal carrier in immunoassay.  相似文献   

12.
Commercially available polystyrene (PS) slides were plasma nanotextured (nano-roughened) through treatment in oxygen plasma discharges to create substrates with increased surface area for microarray applications. Conditions of plasma treatment were determined for maximum and uniform oligonucleotide immobilization on these nanotextured PS slides. Oligonucleotides were immobilized onto the surface in the form of biotinylated oligonucleotide/streptavidin conjugates to take advantage of increased protein binding capacity of the substrate. It was found that the amount of oligonucleotides that could be immobilized was increased up to ten times on plasma treated as compared with untreated slides. The sensitivity of detection of labelled hybridized probes was improved by a factor of 20. Optimized nanotextured PS slides were subsequently used to develop a microarray for the detection of three deleterious BRCA1 gene mutations by immobilizing oligonucleotides corresponding to wild and mutant-type sequences. The microarray developed on the nanotextured PS slides provided higher specific hybridization signal and discrimination ratios as compared with flat untreated PS slides.  相似文献   

13.
A novel fluorescent molecular switch for the detection of nucleic acid hybridization has been explored in relation to the development of a structure that would be amenable for operation when immobilized for solid-phase analyses. The structure was prepared by self-assembly, and used Neutravidin as the central multivalent docking molecule, a newly synthesized biotinylated long-chain linker for intercalating dye that was modified with thiazole orange (TO) at one end, and a biotinylated probe oligonucleotide. Self-assembly of the biotinylated components on adjacent Neutravidin binding sites allowed for physical placement of an oligonucleotide probe molecule next to tethered TO. The TO located at the end of the flexible linker chain was available to intercalate, and could report if a duplex structure was formed by a probe–target interaction by means of fluorescence intensity. Subsequently, regeneration of the single-stranded probe was possible without loss of the intercalator to solution. The switch constructs were assembled in solution and subsequently immobilized onto biotin functionalized optical fibers to complete the sensor design. Solution-phase fluorescence lifetime data showed a biexponential behavior for switch constructs, suggesting intercalation as well as a significant secondary binding mode for the immobilized TO. It was found that the secondary binding mechanism for the dye to DNA could be decreased, thus shifting the dye to intercalative binding modes, by adjusting the solution conditions to a pH below the pI of Neutravidin, and by increasing the ionic strength of the buffer. Preliminary work demonstrated that it was possible to achieve up to a fivefold increase in fluorescence intensity on hybridization to the target.  相似文献   

14.
A microparticle surface was designed by the unique method incorporating streptavidin-biotin affinity and sortase A (SrtA)-catalyzed transpeptidation. Leucine-proline-glutamate-threonine-glycine-tagged streptavidin (Stav-LPETG)was immobilized on the surface using streptavidin-biotin affinity, and GGGGG-tagged red fluorescent protein (Gly5-RFP) was conjugated with SrtA. Biotinylated fluorescein isothiocyanate (biotin-FITC) was then bound to residual biotin-binding sites in Stav-LPETG. The resulting particles had RFP and FITC immobilized on the surface via Stav-LPETG, and RFP- and FITC-associated fluorescence was observed using fluorescence microscopy. Finally, GGG-tagged glucose oxidase and biotinylated horseradish peroxidase were immobilized on the microparticle surface, resulting in a functional particle capable of detecting glucose. This particle can be repeatedly used and is more sensitive in detecting glucose than particles prepared using chemical modification. Our method provides a simple strategy for site-specific coimmobilization on molecular surfaces and expands the use of protein hybrid devices.  相似文献   

15.
The ultimate nature of streptavidin to bind biotin tightly is widely utilized in many solid-phase based applications to provide a universal binding surface for biotinylated molecules. However, the preparation of the streptavidin coatings by passive adsorption may heavily alter the binding properties of native streptavidin and may not result in the best possible capture surface for demanding solid-phase assays. By introducing sulphydryl groups through primary amines in the protein, we have activated and conjugated native streptavidin into larger protein polymers resulting in high local binding density when coated on polystyrene. This thiolated streptavidin formed through chemical modification has improved adsorption properties and biotin binding capability, compared to the native streptavidin. When this thiolated streptavidin is coated on polystyrene, a dense surface is formed, which provides up to 3-fold increase in the biotin binding efficiency and improves the surface stability by minimizing the desorption of the adsorbed protein from the surface during incubation. Furthermore, this high-capacity surface is resistant to harsh chemical treatments, such as denaturing conditions or mild reducing conditions. The improved adsorption properties of the thiolated streptavidin allow the coating process to be performed with shorter incubation times (15 min), still providing enhanced solid-phase properties, compared to a reference streptavidin surface.  相似文献   

16.
This work describes a comparative study between two biosensing platforms that are commonly used to immobilize capture probes. These platforms refer to thiolated and biotinylated oligonucleotide strands chemisorbed on Au surfaces (DNA SAM) and bioconjugated on streptavidin (SA) monolayers (SA SAM), respectively. Both interfacial architectures were studied using surface acoustic wave (SAW) devices and surface plasmon spectroscopy (SPR). Our studies indicated that DNA SAM platforms enable higher densities of surface-confined oligonucleotide probes. However, their hybridization efficiency is lower when compared to that obtained in SA SAM platforms, thus impacting on a lower detection limit, 5 nM. Furthermore, binding of SA molecules to the biotinylated targets, in an attempt to enhance the signal in both platforms, revealed striking differences between both architectures. The SA underlayer used in the SA SAM configuration confers nonfouling characteristics to the interfacial assembly, thus precluding the nonspecific binding of SA onto the surface. The antifouling behavior of the SA DNA platform is an important feature to be considered in the amplification of hybridization events through the bioconjugation of biotinylated targets with streptavidin-based tags.  相似文献   

17.
We report here a novel strategy for the high-sensitive detection of target biomolecules with very low concentrations on a quartz crystal microbalance (QCM) device using gold nanoparticles as signal enhancement probes. By employing a streptavidin-biotin interaction as a model system, we could prepare biotin-conjugated gold nanoparticles maintaining good dispersion and long-term stability by controlling the biotin density on the surface of gold nanoparticles that have been investigated by UV-vis spectra and AFM images. These results showed that 10 microM N-(6-[biotinamido]hexyl)-3'-(2'-pyridyldithio)propionamide (biotin-HPDP) was the critical concentration to prevent the nonspecific aggregation of gold nanoparticles in this system. For sensing streptavidin target molecules by QCM, biotinylated BSA was absorbed on the Au surface of the QCM electrode and subsequent coupling of the target streptavidin to the biotin in the sensing interface followed. Amplification of the sensing process was performed by the interaction of the target streptavidin on the sensing surface with gold nanoparticles modified with 10 microM biotin-HPDP. The biotinylated gold nanoparticles were used as signal amplification probes to improve the detection limit, which was 50 ng/ml, of the streptavidin detection system without signal enhancement, and the calibration curve determined for the net frequency changes showed good linearity over a wide range from 1 ng/ml to 10 microg/ml for the quantitative streptavidin target molecule analysis. In addition, the measured dissipation changes suggested that the layer of biotin-BSA adsorbed on the Au electrode and the streptavidin layer assembled on the biotin-BSA surface were highly compact and rigid. On the other hand, the structure formed by the biotinylated gold nanoparticles on the streptavidin layer was flexible and dissipative, being elongated outward from the sensing surface.  相似文献   

18.
A separation method is reported for particle and biochemical analysis based on affinity interactions between particle surfaces under magnetic field. In this method, magnetic particles with immunoglobulin G (IgG) or streptavidin on the surface are flowed through a separation channel to form a deposition matrix for selectively capturing nonmagnetic analytes with protein A or biotin on the surface due to specific antigen (Ag)--antibody (Ab) interactions. This separation method was demonstrated using model reactions of IgG--protein A and streptavidin-biotin on particle surface. The features of this new separation method are (1) the deposited Ag-Ab complex can be examined and further analyzed under the microscope, (2) a kinetic study of complex binding is possible, and (3) the predeposited matrix can be formed selectively and changed easily. The detection limits were about 10(-11) g. The running time was less than 10 min. The selectivities of studied particles were 94% higher than those of label-controlled particles. This method extends the applications of analytical magnetapheresis to nonmagnetic particles. Preliminary study shows that this separation method has a great potential to provide a simple, fast, and selective analysis for particles, blood cells, and immunoassay related applications.  相似文献   

19.
The interaction of avidin with biotin was studied on functionalized quartz surfaces terminated with 3-aminopropyltrimethoxysilane (3-APTMS), 2,2'-(ethylenedioxy)bis(ethylenediamine) (DADOO), and fourth-generation amine-terminated polyamidoamine (G4-NH2 PAMAM) dendrimers with the use of Fourier transform infrared reflection-absorption spectroscopy (FT-IRRAS). In particular, the molecular recognition ability of these surfaces was quantified through FT-IRRAS in combination with the use of an alkyne dicobalt hexacarbonyl probe coupled with avidin. The degree of nonspecific adsorption of avidin was determined by exposure of the amine-terminated and/or biotinylated surfaces to solutions of biotin-saturated avidin. The results indicate that the biotinylated 3-APTMS layer exhibits a very low specific binding capacity for avidin (on the order of 0.15 pmol of avidin/cm2) and substantial nonspecific adsorption. Both the binding capacity and the specificity were greatly improved when the 3-APTMS layer on quartz was modified through serial chemisorption of glutaraldehyde (GA), DADOO, and/or G4-NH2 PAMAM dendrimer layers. Among these layers, the biotinylated G4-NH2 PAMAM dendrimer layer exhibited the highest capacity for avidin binding (2.02 pmol of avidin/cm2) with a specificity of approximately 90%. This effect can be attributed to the efficient packing/ordering of the binding dendrimer layer, leading to a more dense and better organized layer of biotin headgroups on the subsequent biotinylated surface.  相似文献   

20.
Fourier transform surface plasmon resonance (FT-SPR) was utilized to study specific and non-specific interactions between proteins and a biotinylated polymer film by monitoring adsorptions of streptavidin (SAv) and bovine serum albumin (BSA) on the polymer films. The biotinylated polymer, poly(lactide-co-2,2-dihydroxymethyl-propylene carbonate-graft-biotin) [P(LA-co-DHC/biotin)], was prepared by ring-opening copolymerization of lactide and a OH-bearing cyclic carbonate monomer, followed by biotinylation of the OH groups. The copolymer was coated onto the FT-SPR chip and vacuum-dried, hydrated at 70°C, and treated with a blocking agent respectively to achieve different surface status. The FT-SPR results showed that the vacuum-dried film had the most BSA adsorption; hydration treatment led to migration of the biotin moieties from inner film to surface and thus resulted in less BSA adsorption; blocking layer on the polymer surface saturated the active sites for physical and chemical adsorptions on the surface and thus weakened the BSA adsorption. Adsorption of SAv displayed similar polymer-surface-status dependence, i.e., more adsorption on vacuum-dried surface, less adsorption on hydrated surface and the least adsorption on blocked surface. Compared with BSA, SAv showed more enhanced adsorptions on P(LA-co-DHC/biotin) surface because of the specific interaction of biotin moieties in the polymer with SAv molecules, especially on the blocked surface. The above semi-quantified results further indicate that the FT-SPR system is suitable for investigating interactions between polymer surface and bio-molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号