首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Electrophoresis》2018,39(4):645-652
Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram‐negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram‐negative pathogens and also validated whether our system can identify Gram‐negative pathogens with the cell‐free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram‐negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX‐M group 1 to identify the ESBL producing Gram‐negative pathogens. All six target‐specific peaks were clearly separated without any non‐specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram‐negative clinical isolates, all of them were successfully identified without any non‐specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis‐causing, drug‐resistant Gram‐negative pathogens and also the major ESBL producing Gram‐negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram‐negative pathogens for sepsis patients, which is very crucial for better treatment outcomes.  相似文献   

2.
Early detection of pathogens from blood and identification of their drug resistance are essential for sepsis management. However, conventional culture‐based methods require relatively longer time to identify drug‐resistant pathogens, which delays therapeutic decisions. For precise multiplex detection of drug‐resistant Gram‐positive pathogens, we developed a method by using stuffer‐free multiplex ligation‐dependent probe amplification (MLPA) coupled with high‐resolution CE single‐strand conformation polymorphisms (CE‐SSCP) system. We designed three probe sets for genes specific to Gram‐positive species (Staphylococcus aureus: nuc, Enterococcus faecium: sodA, and Streptococcus pneumoniae: lytA) and two sets for genes associated with drug resistance (mecA and vanA) to discriminate major Gram‐positive pathogens with the resistance. A total of 94 different strains (34 reference strains and 60 clinical isolates) were used to validate this method and strain‐specific peaks were successfully observed for all the strains. To improve sensitivity of the method, a target‐specific preamplification step was introduced and, consequently, the sensitivity increased from 10 pg to 100 fg. We also reduced a total assay time to 8 h by optimizing hybridization time without compromising test sensitivity. Taken together, our multiplex detection system can improve detection of drug‐resistant Gram‐positive pathogens from sepsis patients’ blood.  相似文献   

3.
The Gram‐negative Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum are major causative agents of aggressive periodontal disease. Due to increase in the number of antibiotic‐resistant bacteria, antimicrobial Photodynamic therapy (aPDT) seems to be a plausible alternative. In this work, photosensitization was performed on Gram‐positive and Gram‐negative bacteria in pure culture using new‐age cationic porphyrins, namely mesoimidazolium‐substituted porphyrin derivative ( ImP ) and pyridinium‐substituted porphyrin derivative ( PyP ). The photophysical properties of both the sensitizers including absorption, fluorescence emission, quantum yields of the triplet excited states and singlet oxygen generation efficiencies were evaluated in the context of aPDT application. The studied porphyrins exhibited high ability to accumulate into bacterial cells with complete penetration into early stage biofilms. As compared with ImP, PyP was found to be more effective for photoinactivation of bacterial strains associated with periodontitis, without any signs of dark toxicity, owing to its high photocytotoxicity.  相似文献   

4.
The increase of bacterial resistance demands rapid and accurate diagnosis of bacterial infections. Biosurface‐induced supramolecular assembly for diagnosis and therapy has received little attention in detecting bacterial infections. Herein we present a dual fluorescent‐nuclear probe based on self‐assembly of vancomycin (Van) on Gram‐positive bacteria for imaging bacterial infection. A Van‐ and rhodamine‐modified peptide derivative (Rho‐FF‐Van), as the imaging agent, binds to the terminal peptide of the methicillin‐resistant staphylococcus aureus (MRSA) and self‐assembles to form nanoaggregates on the surface of MRSA . In an in vivo myositis model, Rho‐FF‐Van results in a significant increased fluorescence signal at the MRSA infected site. Radiolabeled with iodine‐125, Rho‐FF‐Van shows strong radioactive signal in the MRSA ‐infected lungs in a murine model. This novel dual fluorescent and nuclear probe promises a new way for in vivo imaging of bacterial infections.  相似文献   

5.
Carbapenem‐resistant Gram‐negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer‐membrane or are excluded by efflux mechanisms. Here, we report a cationic block β‐peptide (PAS8‐b‐PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action. PAS8‐b‐PDM12 does not only compromise the integrity of the bacterial outer‐membrane, it also deactivates efflux pump systems by dissipating the transmembrane electrochemical potential. As a result, PAS8‐b‐PDM12 sensitizes carbapenem‐ and colistin‐resistant GNB to multiple antibiotics in vitro and in vivo. The β‐peptide allows the perfect alternation of cationic versus hydrophobic side chains, representing a significant improvement over previous antimicrobial α‐peptides sensitizing agents. Together, our results indicate that it is technically possible for a single adjuvant to reverse innate antibiotic resistance in all pathogenic GNB of the ESKAPE group, including those resistant to last resort antibiotics.  相似文献   

6.
A series of novel fused thiazolo[3,2‐a]pyrimidin‐3‐ol derivatives have been synthesized by reaction of fused pyrimidine‐thiones with 4‐substituted phenacyl bromide/3(2‐bromoacetyl)coumarin in refluxing acetic acid with good yields. All the synthesized compounds were confirmed by spectral studies and screened for their in vitro antibacterial activity against Staphylococcus aureus, Bacillus thuringiensis (Gram positive), Escherichia coli, and Klebsiella pneumoniae (Gram negative) bacterial strains. Activity results revealed that all the compounds were weak to good active against the tested bacterial strains on comparing with the standard drug gentamicin.  相似文献   

7.
A series of unsymmetrically substituted N‐heterocyclic carbene (NHC) precursors ( 1a , 1b , 1c , 1d , 1e ) were synthesized from the reaction of N‐phenylbenzimidazole with various alkyl halides. These compounds were used to synthesize NHC–silver(I) complexes ( 2a , 2b , 2c , 2d , 2e ). The five new 1‐phenyl‐3‐alkylbenzimidazolium salts ( 1a , 1b , 1c , 1d , 1e ) and their NHC–silver complexes ( 2a , 2b , 2c , 2d , 2e ) were characterized by the 1H NMR, 13C NMR and FT‐IR spectroscopic methods and elemental analysis techniques. Also, the two NHC–silver complexes 2b and 2c were characterized by single‐crystal X‐ray crystallography, which confirmed the linear C―Ag―Cl arrangements. The antibacterial activities of the NHC precursor and NHC–silver complexes were tested against three Gram‐positive bacterial strains (Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus) and three Gram‐negative bacterial strains (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) using the microdilution broth method. The NHC–silver complexes showed higher antibacterial activity than the NHC precursors. In addition, silver complexes 2a , 2b , 2c , 2d showed high antibacterial activity against the Gram‐positive bacteria L. monocytogenes and S. aureus compared to the standard, tetracycline. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Nanozymes have emerged as a new generation of antibiotics with exciting broad‐spectrum antimicrobial properties and negligible biotoxicities. However, their antibacterial efficacies are unsatisfactory due to their inability to trap bacteria and their low catalytic activity. Herein, we report nanozymes with rough surfaces and defect‐rich active edges. The rough surface increases bacterial adhesion and the defect‐rich edges exhibit higher intrinsic peroxidase‐like activity compared to pristine nanozymes due to their lower adsorption energies of H2O2 and desorption energy of OH*, as well as the larger exothermic process for the whole reaction. This was demonstrated using drug‐resistant Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus in vitro and in vivo. This strategy can be used to engineer nanozymes with enhanced antibacterial function and will pave a new way for the development of alternative antibiotics.  相似文献   

9.
Gram‐negative pathogens represent a significant global health threat, while the emergency and widespread of drug resistance make the situation even worse. As “privileged building blocks,” 4‐quinolones including fluoroquinolones are mainstays of chemotherapy against various bacterial infections. However, as other antibiotics, the resistance of Gram‐negative bacteria to 4‐quinolones develops rapidly and spreads widely throughout the world. To overcome the resistance and improve the potency, a number of 4‐quinolone derivatives were designed, synthesized, and screened for their in vitro and in vivo activities against representative Gram‐negative pathogens. This review aims to summarize the recent advances made towards the discovery of 4‐quinolone derivatives as anti‐Gram‐negative agents as well as their structure–activity relationship. The enriched structure–activity relationship paves the way to the further rational development of 4‐quinolones with excellent potency against both drug‐susceptible and drug‐resistant Gram‐negative pathogens.  相似文献   

10.
Uncontrolled aggregation of bacterial cells is a significant disadvantage of electrophoretic separations. Various aspects of the electrophoretic behavior of different strains of Gram‐positive Bacillus cereus, Bacillus subtilis, Sarcina lutea, Staphylococcus aureus(1), and Micrococcus luteus bacteria and Gram‐negative Escherichia coli bacteria were investigated in this study. Our findings indicate that bacteria can be rapidly analyzed by CZE with surface charge modification by calcium ions (Ca2+). Bound Ca2+ ions increase zeta potential to more than 2.0 mV and significantly reduce repulsive forces. Under the above conditions, bacterial cells create compact aggregates, and fewer high‐intensity signals are observed in electropherograms. The above can be attributed to the bridging effect of Ca2+ between bacterial cells. CE was performed to analyze bacterial aggregates in an isotachophoretic mode. A single peak was observed in the electropherogram.  相似文献   

11.
A novel series of (4‐fluorophenyl)(4‐(naphthalen‐2‐yl)‐6‐aryl‐2‐thioxo‐2,3‐dihydropyrimidin‐1(6H)‐yl)methanone derivatives were synthesized from reaction of 6‐(naphthalen‐2‐yl)‐4‐aryl‐3,4‐dihydropyrimidine‐2(1H)‐thiones with 4‐fluorobenzoylchloride in dichloromethane in the presence of triethylamine. The synthesized compounds were screened for antibacterial activity against Gram positive bacteria, namely, Staphylococcus aureus ATCC25923 and Listeria monocytogenes MTCC657, and Gram negative bacteria, namely, Escherichia coli ATCC25922 and Klebsiella pneumoniae ATCC700603, respectively. Some of the tested compounds showed significant antimicrobial activity.  相似文献   

12.
A total of 17 new N‐substituted derivatives ( 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k and 3b , 3c , 3d , 3e , 3f , 3g , 3h ) of 5‐((2‐phenylthiazol‐4‐yl)methylene) thiazolidine‐2,4‐dione ( 2a ) and 5‐(2,6‐dichloro‐ benzylidene)thiazolidine‐2,4‐dione ( 3a ) were synthesized. The structural elucidation of the newly synthesized compounds was based on elemental analysis and spectroscopic data (MS, 1H NMR, 13C NMR), and their antimicrobial activities were assessed in vitro against several strains of Gram‐positive and Gram‐negative bacteria and one fungal strain (Candida albicans) as growth inhibition diameter. Some of them showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus, Bacillus cereus, and Enterococcus fecalis bacterial strains, whereas almost all the compounds were inactive against Listeria monocytogenes. All of the synthesized compounds showed moderate to very good activity against C. albicans.  相似文献   

13.
Traditional photosensitizers (PSs) show reduced singlet oxygen (1O2) production and quenched fluorescence upon aggregation in aqueous media, which greatly affect their efficiency in photodynamic therapy (PDT). Meanwhile, non‐targeting PSs generally yield low efficiency in antibacterial performance due to their short lifetimes and small effective working radii. Herein, a water‐dispersible membrane anchor (TBD‐anchor) PS with aggregation‐induced emission is designed and synthesized to generate 1O2 on the bacterial membrane. TBD‐anchor showed efficient antibacterial performance towards both Gram‐negative (Escherichia coli) and Gram‐positive bacteria (Staphylococcus aureus). Over 99.8 % killing efficiency was obtained for methicillin‐resistant S. aureus (MRSA) when they were exposed to 0.8 μm of TBD‐anchor at a low white light dose (25 mW cm?2) for 10 minutes. TBD‐anchor thus shows great promise as an effective antimicrobial agent to combat the menace of multidrug‐resistant bacteria.  相似文献   

14.
A series of novel 4‐aminoquinoline 1,3,5‐triazine derivatives were synthesized and characterized by FTIR, 1H‐NMR, 13C‐NMR, MS, and elemental analysis. The antibacterial activities of synthesized compounds were tested against three Gram‐positive bacteria, namely Bacillus subtilis (NCIM‐2063), Bacillus cereus (NCIM‐2156), and Staphylococcus aureus (NCIM‐2079), and four Gram‐negative bacteria, namely Proteus vulgaris (NCIM‐2027), Proteus mirabilis (NCIM‐2241), Escherichia coli (NCIM‐2065), and Pseudomonas aeruginosa (NCIM‐2036), using ciprofloxacin as reference standard drug. Results showed compound 9a and 9e as potent antibacterial agents against all bacterial strains except Bacillus cereus (NCIM‐2156). Copyright © 2014 HeteroCorporation  相似文献   

15.
A series of zinc(II) phthalocyanines conjugated with an oligolysine chain (n=2, 4, and 8) were synthesized and characterized by using various spectroscopic methods. As shown by using UV/Vis and fluorescence spectroscopic methods, these compounds were nonaggregated in N,N‐dimethylformamide, and gave a weak fluorescence emission and high singlet oxygen quantum yield (ΦΔ=0.86–0.89) as a result of their di‐α‐substitution. They became slightly aggregated in water with 0.05 % Cremophor EL, but they could still generate singlet oxygen effectively. The antimicrobial photodynamic activities of these compounds were then examined against various bacterial strains, including the Gram‐positive methicillin‐sensitive Staphylococcus aureus ATCC 25923 and methicillin‐resistant Staphylococcus aureus ATCC BAA‐43, and the Gram‐negative Escherichia coli ATCC 35218 and Pseudomonas aeruginosa ATCC 27853. Generally, the dyes were much more potent toward the Gram‐positive bacteria. Only 15 to 90 nM of these photosensitizers was required to induce a 4 log reduction in the cell viability of the strains. For Escherichia coli, the photocytotoxicity increased with the length of the oligolysine chain. The octalysine derivative showed the highest potency with a 4 log reduction concentration of 0.8 μM . Pseudomonas aeruginosa was most resistant to the photodynamic treatment. The potency of the tetralysine derivative toward a series of clinical strains of Staphylococcus aureus was also examined and found to be comparable with that toward the nonclinical counterparts. Moreover, the efficacy of these compounds in photodynamic inactivation of viruses was also examined. They were highly photocytotoxic against the enveloped viruses influenza A virus (H1N1) and herpes simplex virus type 1 (HSV1), but exhibited no significant cytotoxicity against the nonenveloped viruses adenovirus type 3 (Ad3) or coxsackievirus (Cox B1). The octalysine derivative also showed the highest potency with an IC50 value of 0.05 nM for the two enveloped viruses.  相似文献   

16.
A new series of 2,4‐diaryl‐6‐methyl‐5‐nitropyrimidines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i ) were synthesized in good yields by Suzuki–Miyaura coupling of 2,4‐dichloro‐6‐methyl‐5‐nitropyrimidine ( 3 ) with various aryl boronic esters ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i ) in the presence of 1,1′‐ bis(diphenylphosphino)ferrocene dichloropalladium(II) (Pd(dppf)2Cl2). Further, antibacterial and antioxidant properties were screened for the title compounds 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i . Most of the compounds possessed significant activity against Gram‐positive bacteria Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria Escherichia coli and Klebsiella pneumoniae. The antioxidant activity of the title compounds showed significant antioxidant activity when compared with vitamin C.  相似文献   

17.
A novel series of 2‐(5‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐4,5‐dihydro‐1H‐pyrazol‐3‐yl)phenols derivative has been synthesized from (E)‐3‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐1‐(2‐hydroxyphenyl)prop‐2‐en‐1‐ones in ethanol and hydrazine hydrate under reflux condition. The synthesized compounds were screened for antibacterial activity against Gram‐positive bacteria viz Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria viz Escherichia coli and Salmonella typhi, respectively. Some of the tested compounds showed significant antimicrobial activity. IR, 1H NMR, mass spectral data, and elemental analysis elucidated the structures of all the newly synthesized compounds.  相似文献   

18.
In the present study, 2‐chloro‐3′,4′‐dihydroxyacetophenone (CCDP), a catechol derivative, was quaternized with poly(propylene oxide)‐g‐poly(dimethylaminoethyl methacrylate) (PPO‐g‐PDMA, PgP) to prepare surface coatings for various substrates. The surfaces of noble metals, oxides, and synthetic polymers were coated by immersion in an aqueous solution of CCDP quaternized with PgP (C‐PgP). The catechol functional groups that remained on the surface were used for deposition of Ag nanoparticles (AgNPs) on the coated surface, to provide a water‐resistant antibacterial polymer with long‐term antimicrobial activity. X‐ray photoelectron spectroscopy confirmed deposition of C‐PgP and AgNPs on the surface coated with the antibacterial polymer. Surface‐immobilized C‐PgP/AgNPs showed outstanding antibacterial activities against Staphylococcus aureus, a Gram‐positive bacterium, and Escherichia coli, a Gram‐negative bacterium. C‐PgP/AgNPs can be applied to a variety of substrates and can therefore be used as antibacterial materials in various fields. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The synthesis of a novel and attractive class of nonsteroidal anti‐inflammatory and antimicrobial organoiron dendrimers attached to the well‐known drug ibuprofen is achieved. The structures of these dendrimers are established by spectroscopic and analytical techniques. The antimicrobial activity of these dendrimers is investigated and tested against five human pathogenic Gram‐positive and Gram‐negative bacteria, and minimum inhibitory concentrations are reported. Some of these synthesized dendrimers exhibit higher inhibitory activity against methicillin‐resistant Staphylococcus aureus, vancomycin‐resistant Enterococcus faecium, and Staphylococcus warneri compare to the reference drugs. As well, the in vitro and in vivo anti‐inflammatory activities of these dendrimers are evaluated. The results of in vivo anti‐inflammatory activity and histopathology of inflamed paws show that all dendrimers display considerable anti‐inflammatory activity; however, second‐generation dendrimer ( G2‐D6 ) shows the best anti‐inflammatory activity, which is more potent than the commercial drug ibuprofen at the same tested dose. Results of the toxicity study reveal that G2‐D6  is the safest drug on biological tissues.  相似文献   

20.
A series of new 1‐substituted 3, 5‐diarylpyrazolines ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) were synthesized in good yield by both conventional and microwave‐assisted synthesis from α, β‐ unsaturated ketones ( 6 , 7 , 8 , 9 ) in n‐butanol and benzothiazole hydrazines ( 2 , 3 , 4 , 5 ). All the new compounds were characterized by IR, NMR, and mass spectral data. The synthesized compounds ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) were evaluated for antibacterial and anthelmintic activities. The compounds showed potent anthelmintic activity against earthworm species (Eudrilus eugeniae) and moderate antibacterial activity against bacterial strains such as Gram positive bacteria, Enterococcus faecalis, Staphylococcus aureus, and Bacillus subtilis, and Gram negative bacteria, Escherichia coli and Proteus mirabilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号