首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Typically sweeping reversed migration EKC (RM‐EKC) is used for online enrichment and separation of neutral compounds in CE, however sweeping is not usually suitable for highly polar neutral compounds due to the lack of strong interaction with micellar phase. Since acidic BGE or coated capillaries (BGE pH 2–8) are used to virtually eliminate the EOF, migration of neutral analytes is only through association with the micelles with relatively slow electrophoretic mobility. To decrease the long analysis times that result, an auxiliary pressure can be applied, which also serves to avoid the associated band broadening. In this study, we have modified a commercially available CE instrument to perform pressure‐assisted sweeping. The apparatus described can be used to precisely control the application of pressure, and therefore direction and magnitude of bulk flow in the capillary. This modification allows us to employ longer capillaries and capillaries with larger internal diameter to increase the sensitivity. An optimized method was used for the analysis of a group of seven N‐nitrosamines that have been widely reported in environmental samples and good concentration factors of up to 34 were achieved. When a coated capillary is employed, this method is effective even at neutral pH, making it broadly applicable.  相似文献   

2.
The use of transient moving chemical reaction boundary (tMCRB) was investigated for the on‐line preconcentration of native amino acids in heart‐cutting 2D‐CE with multiple detection points using contactless conductivity detection. The tMCRB focusing was obtained by using ammonium formate (pH 8.56) as sample matrix and acetic acid (pH 2.3) as a BGE in the first dimension of the heart‐cutting 2D‐CE. Different experimental parameters such as the injected volume and the concentration in ammonium formate were optimized for improving the sensitivity of detection. A stacked fraction from the first dimension was selected, isolated in the capillary, and then separated in the second dimension in the presence of a chiral selector ((+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid). This on‐line tMCRB preconcentration coupled with heart‐cutting 2D‐CE was applied with success to the chiral separation of D ,L ‐phenylalanine, and D ,L ‐threonine in a mixture of 22 native amino acids. The sample mixture was diluted in 0.8 M of ammonium formate, and injected at a concentration of 2.5 μM for each enantiomer with a volume corresponding to 10% of the total capillary volume. An LOD (S/N=3) of 2 μM was determined for L ‐threonine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号