首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population‐divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12‐STR multiplex composed of ancestry informative marker STRs (AIM‐STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM‐SNPs: Snipper, to handle multiallele STR data using frequency‐based training sets. We assessed the ability of the 12‐plex AIM‐STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM‐SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available.  相似文献   

2.
《Electrophoresis》2017,38(7):1016-1021
A Y‐STR multiplex system has been developed with the purpose of complementing the widely used 17 Y‐STR haplotyping (AmpFlSTR Y Filer® PCR Amplification kit) routinely employed in forensic and population genetic studies. This new multiplex system includes six additional STR loci (DYS576, DYS481, DYS549, DYS533, DYS570, and DYS643) to reach the 23 Y‐STR of the PowerPlex® Y23 System. In addition, this kit includes the DYS456 and DYS385 loci for traceability purposes. Male samples from 625 individuals from ten worldwide populations were genotyped, including three sample sets from populations previously published with the 17 Y‐STR system to expand their current data. Validation studies demonstrated good performance of the panel set in terms of concordance, sensitivity, and stability in the presence of inhibitors and artificially degraded DNA. The results obtained for haplotype diversity and discrimination capacity with this multiplex system were considerably high, providing further evidences of the suitability of this novel Y‐STR system for forensic purposes. Thus, the use of this multiplex for samples previously genotyped with 17 Y‐STRs will be an efficient and low‐cost alternative to complete the set of 23 Y‐STRs and improve allele databases for population and forensic purposes.  相似文献   

3.
《Electrophoresis》2017,38(8):1163-1174
Next generation sequencing (NGS) is the emerging technology in forensic genomics laboratories. It offers higher resolution to address most problems of human identification, greater efficiency and potential ability to interrogate very challenging forensic casework samples. In this study, a trial set of DNA samples was artificially degraded by progressive aqueous hydrolysis, and analyzed together with the corresponding unmodified DNA sample and control sample 2800 M, to test the performance and reliability of the ForenSeqTM DNA Signature Prep kit using the MiSeq Sequencer (Illumina). The results of replicate tests performed on the unmodified sample (1.0 ng) and on scalar dilutions (1.0, 0.5 and 0.1 ng) of the reference sample 2800 M showed the robustness and the reliability of the NGS approach even from sub‐optimal amounts of high quality DNA. The degraded samples showed a very limited number of reads/sample, from 2.9–10.2 folds lower than the ones reported for the less concentrated 2800 M DNA dilution (0.1 ng). In addition, it was impossible to assign up to 78.2% of the genotypes in the degraded samples as the software identified the corresponding loci as “low coverage” (< 50x). Amplification artifacts such as allelic imbalances, allele drop outs and a single allele drop in were also scored in the degraded samples. However, the ForenSeqTM DNA Sequencing kit, on the Illumina MiSeq, was able to generate data which led to the correct typing of 5.1–44.8% and 10.9–58.7% of 58 of the STRs and 92 SNPs, respectively. In all trial samples, the SNP markers showed higher chances to be typed correctly compared to the STRs. This NGS approach showed very promising results in terms of ability to recover genetic information from heavily degraded DNA samples for which the conventional PCR/CE approach gave no results. The frequency of genetic mistyping was very low, reaching the value of 1.4% for only one of the degraded samples. However, these results suggest that further validation studies and a definition of interpretation criteria for NGS data are needed before implementation of this technique in forensic genetics.  相似文献   

4.
We have developed a novel STR 25‐plex florescence multiplex‐STR kit (DNATyper25) to genotype 23 autosomal and two sex‐linked loci for forensic applications and paternity analysis. Of the 23 autosomal loci, 20 are non‐CODIS. The sex‐linked markers include a Y‐STR locus (DYS391) and the Amelogenin gene. We present developmental validation studies to show that the DNATyper25 kit is reproducible, accurate, sensitive, and robust. Sensitivity testing showed that full profiles were achieved with as low as 125 pg of human DNA. Specificity testing demonstrated a lack of cross reactivity with a variety of commonly encountered non‐human DNA contaminants. Stability testing showed that full profiles were obtained with humic acid concentration ≤60 ng/μL and hematin concentration <400 μM. For forensic evaluation, the 23 autosomal STRs followed the Hardy–Weinberg equilibrium. In an analysis of 509 Chinese (CN) Hans, we detected a combined total of 181 alleles at the 23 autosomal STR loci. Since these autosomal STRs are independent from one another, PM was 8.4528 × 10?22, TDP was 0.999 999 999 999 999 999 999, CEP was 0.999 999 8395. The forensic efficiency parameters demonstrated that these autosomal STRs are highly polymorphic and informative in the Han population of China. We performed population comparisons and showed that the Northern CN Han has a close genetic relationship with the Luzhou Han, Tujia, and Bai populations. We propose that the DNATyper25 kit will be useful for cases where paternity analysis is difficult and for situations where DNA samples are limited in quantity and low in quality.  相似文献   

5.
Lou C  Cong B  Li S  Fu L  Zhang X  Feng T  Su S  Ma C  Yu F  Ye J  Pei L 《Electrophoresis》2011,32(3-4):368-378
Single nucleotide polymorphisms (SNPs), which have relatively low mutation rates and can be genotyped after PCR with shorter amplicons compared with short tandem repeats (STRs), are being considered as potentially useful markers in forensic DNA analysis. Those SNPs with high heterozygosity and low Fst (F-statistics) in human populations are described as individual identification SNPs, which perform the same function as STRs used in forensic routine work. In the present study, we developed a multiplex typing method for analyzing 44 selected individual identification SNPs simultaneously by using multiplex PCR reaction in association with fluorescent labeled single base extension (SBE) technique. PCR primers were designed and the lengths of the amplicons ranged from 69 to 125?bp. The population genetics data of 79 unrelated Chinese individuals for the 44 SNP loci were investigated and a series of experiments were performed to validate the characteristic of the SNP multiplex typing assay, such as sensitivity, species specificity and the performance in paternity testing and analysis of highly degraded samples. The results showed that the 44-SNPs multiplex typing assay could be applied in forensic routine work and provide supplementary data when STRs analysis was partial or failed.  相似文献   

6.
《Electrophoresis》2017,38(6):846-854
This study assesses the performance of Illumina's MiSeq FGx System for forensic genomics by systematically analyzing single source samples, evaluating concordance, sensitivity and repeatability, as well as describing the quality of the reported outcomes. DNA from 16 individuals (9 males/7 females) in nine separate runs showed consistent STR profiles at DNA input ≥400 pg, and two full profiles were obtained with 50 pg DNA input. However, this study revealed that the outcome of a single sample does not merely depend on its DNA input but is also influenced by the total amount of DNA loaded onto the flow cell from all samples. Stutter and sequence or amplification errors can make the identification of true alleles difficult, particularly for heterozygous loci that show allele imbalance. Sequencing of 16 individuals’ STRs revealed genetic variations at 14 loci at frequencies suggesting improvement of mixture deconvolution. The STR loci D1S1656 and DXS10103 were most susceptible to drop outs, and D22S1045 and DYS385a‐b showed heterozygote imbalance.  Most stutters were typed at TH01 and DYS385a‐b, while amplification or sequencing errors were observed mostly at D7S820 and D19S433. Overall, Illumina's MiSeq FGx System produced reliable and repeatable results.  aSTRs showed fewer drop outs than the Y‐ and X‐STRs.  相似文献   

7.
We evaluate the usefulness of a commercially available microchip CE (MCE) device in different genetic identification studies performed with mitochondrial DNA (mtDNA) targets, including the haplotype analysis of HVR1 and HVR2 and the study of interspecies diversity of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes in forensic and ancient DNA samples. The MCE commercial system tested in this study proved to be a fast and sensitive detection method of length heteroplasmy in cytosine stretches produced by 16 189T>C transitions in HVR1 and by 309.1 and 309.2 C-insertions in HVR2. Moreover, the quantitative analysis of PCR amplicons performed by LIF allowed normalizing the amplicon input in the sequencing reactions, improving the overall quality of sequence data. These quantitative data in combination with the quantification of genomic mtDNA by real-time PCR has been successfully used to evaluate the PCR efficiency and detection limit of full sequencing methods of different mtDNA targets. The quantification of amplicons also provided a method for the rapid evaluation of PCR efficiency of multiplex-PCR versus singleplex-PCR to amplify short HV1 amplicons (around 100 bp) from severely degraded ancient DNA samples. The combination of human-specific (Cyt b) and universal (16S rRNA) mtDNA primer sets in a single PCR reaction followed by MCE detection offers a very rapid and simple screening test to differentiate between human and nonhuman hair forensic samples. This method was also very efficient with degraded DNA templates from forensic hair and bone samples, because of its applicability to detect small amplicon sizes. Future possibilities of MCE in forensic DNA typing, including nuclear STRs and SNP profiling are suggested.  相似文献   

8.
A new multiplex system for six tetranucleotide short tandem repeat (STR) loci was devised based on multicolor dye technology. Six loci (D20S480, D6S2439, D6S1056, D9S1118, D4S2639, and D17S1290), each with high discriminating power (each unbiased estimates of expected heterozygosity, Exp. Hz, > 0.80 in a preliminary test), were selected from more than 100 tetranucleotide STRs included in a commercially available primer set. These loci were also selected so as not to link with general STRs in commercially released kits including the combined DNA index system (CODIS) 13 core STRs. The primers were newly designed in the present study, in which each amplicon size had a range of less than 200 base pairs (bp), in order to genotype from highly degraded template DNA. Using this system, we genotyped 270 Honshu (mainland)-Japanese and 187 Okinawa-Japanese. From these allele frequencies, we performed three tests, a homozygosity test, a likelihood ratio test and an exact test for Hardy-Weinberg equilibrium (HWE), and no significant deviations (p < 0.05) from HWE were observed. We also compared the allele distributions at six STRs between both populations, and they were significantly different (p < 0.05) at three loci (D6S2439, D9S1118 and D4S2639). Furthermore, the Exp. Hz and the power of discrimination (PD) at all loci in the Honshu-Japanese population were higher than 0.80 and 0.93, respectively. These statistical values for discriminating power in the Honshu-Japanese were almost the same as in the Okinawa-Japanese. This novel, multiplex polymerase chain reaction (PCR) amplification and typing system for six STR loci thus promises to be a convenient and informative new DNA profiling system in the forensic field.  相似文献   

9.
STR analysis is commonly used in forensic and genetic studies. STRs are currently discriminated based on size, primarily by gel- and column-based approaches. Hybridization-based approaches have the potential to allow high-throughput analysis of STRs; however, development of such approaches has been limited by the difficulty in discriminating between STRs of similar length. We have recently described several innovations to enable STR analysis using an array-based hybridization approach for high- throughput STR analysis. Here we extend that approach by incorporating the array into microspheres and adding a discriminatory branch migration displacement step. This microsphere-based platform uses Luminex xMAP technology and improves the sensitivity, selectivity, and speed of the assay. We demonstrate the feasibility, speed, and reliability of the assay for STR detection by correctly analyzing two STR loci in 20 forensic DNA samples of known STR type. The multiplex, bead-based approach provides a high-throughput and more portable STR analysis.  相似文献   

10.
Massively parallel sequencing of forensic STRs simultaneously provides length-based genotypes and core repeat sequences as well as flanking sequence variations. Here, we report primer sequences and concentrations of a next-generation sequencing (NGS)-based in-house panel covering 28 autosomal STR loci (CSF1PO, D1GATA113, D1S1627, D1S1656, D1S1677, D2S441, D2S1776, D3S3053, D5S818, D6S474, D6S1017, D6S1043, D8S1179, D9S2157, D10S1435, D11S4463, D13S317, D14S1434, D16S539, D18S51, D18S853, D20S482, D20S1082, D22S1045, FGA, TH01, TPOX, and vWA) and the sex determinant locus Amelogenin. Preliminary evaluation experiments showed that the panel yielded intralocus- and interlocus-balanced sequencing data with a sensitivity as low as 62.5 pg input DNA. A total of 203 individuals from Yunnan Bai population were sequenced with this panel. Comparative forensic genetic analyses showed that sequence-based matching probability of this 29-plex panel reached 2.37 × 10−29, which was 23 times lower than the length-based data. Compound stutter sequences of eight STRs were compared with parental alleles. For seven loci, repeat motif insertions or deletions occurred in the longest uninterrupted repeat sequences (LUS). However, LUS and non-LUS stutters co-existed in the locus D6S474 with different sequencing depth ratios. These results supplemented our current knowledge of forensic STR stutters, and provided a sound basis for DNA mixture deconvolution.  相似文献   

11.
Measurement of the length of DNA fragments plays a pivotal role in genetic mapping, disease diagnostics, human identification and forensic applications. PCR followed by electrophoresis is used for DNA length measurement of STRs, a process that requires labeled primers and allelic ladders as standards to avoid machine error. Sequencing‐based approaches can be used for STR analysis to eliminate the requirement of labeled primers and allelic ladder. However, the limiting factor with this approach is unsynchronized polymerization in heterozygous sample analysis, in which alleles with different lengths can lead to imbalanced heterozygote peak height ratios. We have developed a rapid DNA length measurement method using peptide nucleic acid and dideoxy dNTPs to “tailor” DNA templates for accurate sequencing to overcome this hurdle. We also devised an accelerated “dyad” pyrosequencing strategy, such that the combined approach can be used as a faster, more accurate alternative to de novo sequencing. Dyad sequencing interrogates two bases at a time by allowing the polymerase to incorporate two nucleotides to DNA template, cutting the analysis time in half. In addition, for the first time, we show the effect of peptide nucleic acid as a blocking probe to stop polymerization, which is essential to analyze the heterozygous samples by sequencing. This approach provides a new platform for rapid and cost‐effective DNA length measurement for STRs and resequencing of small DNA fragments.  相似文献   

12.
Short tandem repeats (STRs), known as microsatellites, are one of the most informative genetic markers for characterizing biological materials. Because of the relatively small size of STR alleles (generally 100-350 nucleotides), amplification by polymerase chain reaction (PCR) is relatively easy, affording a high sensitivity of detection. In addition, STR loci can be amplified simultaneously in a multiplex PCR. Thus, substantial information can be obtained in a single analysis with the benefits of using less template DNA, reducing labor, and reducing the contamination. We investigated 14 STR loci in a Japanese population living in Sendai by three multiplex PCR kits, GenePrint PowerPlex 1.1 and 2.2. Fluorescent STR System (Promega, Madison, WI, USA) and AmpF/STR Profiler (Perkin-Elmer, Norwalk, CT, USA). Genomic DNA was extracted using sodium dodecyl sulfate (SDS) proteinase K or Chelex 100 treatment followed by the phenol/chloroform extraction. PCR was performed according to the manufacturer's protocols. Electrophoresis was carried out on an ABI 377 sequencer and the alleles were determined by GeneScan 2.0.2 software (Perkin-Elmer). In 14 STRs loci, statistical parameters indicated a relatively high rate, and no significant deviation from Hardy-Weinberg equilibrium was detected. We apply this STR system to paternity testing and forensic casework, e.g., personal identification in rape cases. This system is an effective tool in the forensic sciences to obtain information on individual identification.  相似文献   

13.
MiniSTR loci have been demonstrated to be an effective approach in recovering genetic information from degraded specimens, because of the reduced PCR amplicon sizes which improved the PCR efficiency. Eight non‐combined DNA index system miniSTR loci suitable for the Chinese Han Population were analyzed in 300 unrelated Chinese Han individuals using two novel five fluorescence‐labeled miniSTR multiplex systems(multiplex I: D10S1248, D2S441, D1S1677 and D9S2157; multiplex II: D9S1122, D10S1435, D12ATA63, D2S1776 and Amelogenin). The allele frequency distribution and forensic parameters in the Chinese Han Population were reported in this article. The Exact Test demonstrated that all loci surveyed here were found to be no deviation from Hardy–Weinberg equilibrium. The accumulated power of discrimination and power of exclusion for the eight loci were 0.999999992 and 0.98, respectively. The highly degraded DNA from artificially degraded samples and the degraded forensic case work samples was assessed with the two miniSTR multiplex systems, and the results showed that the systems were quite effective.  相似文献   

14.
Human identification is usually based on the study of STRs or SNPs depending on the particular characteristics of the investigation. However, other types of genetic variation such as insertion/deletion polymorphisms (indels) have considerable potential in the field of identification, since they can combine the desirable characteristics of both STRs and SNPs. In this study, a set of 38 non‐coding bi‐allelic autosomal indels reported to be polymorphic in African, European, and Asian populations were selected. We developed a sensitive genotyping assay, which is able to characterize all 38 bi‐allelic markers using a single multiplex PCR and detected with standard CE analyzers. Amplicon length was designed to be shorter than 160 bp. Complete profiles were obtained using 0.3 ng of DNA, and full genotyping of degraded samples was possible in cases where standard STR typing had partially failed. A total of 306 individuals from Angola, Mozambique, Portugal, Macau, and Taiwan were studied and population data are presented. All indels were polymorphic in the three population groups studied and the random match probabilities of the set ranged in orders of magnitude from 10?14 to 10?15. Therefore, the indel‐plex represents a valuable approach in human identification studies, especially in challenging DNA cases, as a more straightforward and efficient alternative to SNP typing.  相似文献   

15.
X‐chromosomal STRs (X‐STRs) have been used as complements of autosomal STR application in recent years. In this work, we present population genetic data of 12 X‐STRs including DXS101, DXS10159, DXS10162, DXS10164, DXS6789, DXS7133, DXS7423, DXS7424, DXS8378, DXS981, GATA165B12, and GATA31E08 loci in a sample of 231 unrelated healthy individuals from the Hui ethnic group in Ningxia Hui Autonomous Region, China. Allelic frequencies of the 12 X‐STR loci and haplotypic frequencies of the reported linkage groups (DXS7424‐DXS101 and DXS10159‐DXS10164‐DXS10162) were investigated in the group, respectively. No STR loci showed significant deviations from the Hardy–Weinberg equilibriums and no linkage disequilibriums of pairwise loci were found after Bonferroni correction, respectively. A combined power of discrimination in female individuals was 0.999999999985 and that in male individuals was 0.99999967, respectively. The combined mean exclusion chance in deficiency cases, normal trios and duo cases were 0.999934, 0.995754, and 0.999796, respectively. Significant differences were observed from 0 to 8 loci, when making comparisons between the data of Hui ethnic group and previously reported data from other 16 populations. The results indicated the new panel of 12 X‐STR loci might be useful for forensic science application.  相似文献   

16.
In the present study, 24 Y‐chromosomal short tandem repeat (Y‐STR) loci were analyzed in 115 unrelated Hui male individuals from Haiyuan county or Tongxin county, Ningxia Hui Autonomous Region, China, to evaluate the forensic application of the 24 STR loci and to analyze interpopulation differentiations by making comparisons between the Hui group data and previously published data of other 13 populations. A total of 115 different haplotypes were observed on these 24 Y‐STR loci. The gene diversities ranged from 0.4049 (DYS437) to 0.9729 (DYS385a, b). The overall haplotype diversity was 1 at AGCU 24 Y‐STR loci level, while the values were reduced to 0.999237, 0.996949, and 0.996644 at the Y‐filer 17 loci, 11 Y‐STR loci of extended haplotype and 9 Y‐STR loci of minimal haplotype levels, respectively; whereas, haplotype diversity for additional 7 loci (not included in Y‐filer 17 loci) was 0.995271. The pairwise FST, multidimensional scaling plot and neighbor‐joining tree indicated the Hui group had the closest genetic relationship with Sala in the paternal lineage in the present study. In summary, the results in our study indicated the 24 Y‐STRs had a high level of polymorphism in Hui group and hence could be a powerful tool for forensic application and population genetic study.  相似文献   

17.
Currently, two of the most widely used X‐chromosome STR (X‐STR) multiplexes are composed by ten (GHEP‐ISFG decaplex) and 12 markers (Investigator Argus X‐12 Kit). The number of markers included is a drawback for complex relative testing cases, likewise the large size of some amplicons difficult their application to degraded samples. Here, we present a new multiplex of 17 X‐STRs with the aim of increasing both the resolution power and forensic applicability. This newly proposed set includes the X‐STRs of the GHEP‐ISFG decaplex, four X‐STRs from the Investigator Argus X‐12 Kit, three of them also included in the decaplex, and six additional more. In order to ensure the allele designation, an allelic ladder was developed. The validation of the present multiplex was carried out according to the revised guidelines by the SWGDAM (Scientific Working Group on DNA Analysis Methods). A total of 488 unrelated individuals from four different continents were analyzed. The forensic efficiency evaluation showed high values of combined power of discrimination in males (≥0.999999996) and females (≥0.999999999999995) as well as combined paternity exclusion probabilities in trios (≥0.99999998) and duos (≥0.999996). The results presented herein have demonstrated that the new 17 X‐STR set constitutes a high‐resolution alternative to the current X‐STR multiplexes.  相似文献   

18.
Mongolian is the eighth largest ethnic minority on Chinese population data according to the 2010 census. In the present study, we presented the first report about the allelic frequencies and forensic statistical parameters at the 21 new STRs and analyzed linkage disequilibrium of pairwise loci in the Mongolian ethnic minority, China. Hardy–Weinberg equilibrium tests demonstrated no significant deviations except for the D1S1627 locus. The cumulative power of discrimination and power of exclusion of all the loci are 0.9999999999999999992576 and 0.9999997528, respectively. The results of analysis of molecular variance showed that significant differences between the Mongolian and the other eight populations were found at 1‐9 STR loci. In population genetics, the results of principal component analysis, structure analysis, and phylogenetic reconstruction analysis indicated shorter genetic distance between the Mongolian group and the Ningxia Han. All the results suggest that the 21 new STR loci will contribute to Chinese population genetics and forensic caseworks in the Mongolian group.  相似文献   

19.
Human identification and paternity testing are usually based on the study of STRs depending on their particular characteristics in the forensic investigation. In this paper, we developed a sensitive genotyping system, SiFaSTR? 23‐plex, which is able to characterize 18 expanded Combined DNA Index System STRs (D3S1358, D5S818, D2S1338, TPOX, CSF1PO, TH01, vWA, D7S820, D21S11, D10S1248, D8S1179, D1S1656, D18S51, D12S391, D19S433, D16S539, D13S317, and FGA), three highly polymorphic STRs among Chinese people (Penta D, Penta E, and D6S1043), one Y‐chromosome Indel and amelogenin using a multiplex PCR; the PCR amplified products were analyzed using the Applied Biosystems 3500 Genetic Analyzer. Full genotyping profiles were obtained using only 31.25 pg of control DNA; various case‐type specimens, as well as ten‐year‐old samples were also successfully genotyped. Additionally, in the validation studies, this multiplex was demonstrated to be human‐specific and compatible with the interference of multiple PCR inhibitors. The system also enabled the detection of mixtures, and complete profiles could be obtained at the mixed ratios of 1:1, 1:3, and 3:1. The development and validation study here illustrated that the SiFaSTR? 23‐plex system is accurate, powerful, and more sensitive than many other systems. What's more, the population data in our study not only illustrated that this 23‐plex typing system was straightforward and efficient but also expanded the Chinese STR database, which could facilitate the appropriate application of the 23 genetic markers in forensic genetics, especially in the Chinese population.  相似文献   

20.
Massively parallel sequencing (MPS) technologies have the ability to reveal sequence variations within STR alleles as well as their nominal allele lengths, which have traditionally been detected by CE instruments. Recently, Thermo Fisher Scientific has updated the MPS-STR panel, named the Precision ID GlobalFiler next-generation sequencing (NGS) STR Panel version 2, with primers redesigned to add two pentanucleotide tandem repeat loci and profile interpretation supported by the Converge software. Using the Ion Chef System, the Ion S5XL System, and the Converge software, genetic variations were characterized within STR repeat and flanking regions of 30 autosomal STR markers in 115 unrelated individuals from two Chinese population groups (58 Tibetans and 57 Hans). Nineteen STRs demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. In total, 390 alleles were identified by their sequences compared with 258 alleles that were identified by length. Of these 92 sequence variants found within the STR repeat regions, 40 variants were located in STR flanking regions. Additionally, the agreement of the results with CE data was evaluated, as was the ability of this new MPS panel to analyze case-type (11 samples) and artificially degraded samples (seven samples in triplicate). The results generated from this study illustrate that extensive sequence variation exists in commonly used STR markers in the selected population samples and indicate that this NGS STR panel has the potential to be used as an effective tool for human forensics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号