首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this work we present an impedimetric detection system for DNA‐ligand interactions. The sensor system consists of thiol‐modified single‐stranded DNA chemisorbed to gold. Impedance measurements in the presence of the redox system ferri‐/ferrocyanide show an increase in charge transfer resistance (Rct) after hybridisation of a complementary target. Different amounts of capture strands, used for gold electrode modification, result in surface coverages between 3 and 15 pmol/cm2 ssDNA. The relative change in Rct upon hybridisation increases with increasing amount of capture probe on the electrode from 1.5‐ to 4.5‐fold. Impedimetric detection of binding events of a metal‐intercalator ([Ru(phen)3]2+) and a groove binder (spermine) to double‐stranded DNA is demonstrated. Binding of [Ru(phen)3]2+ and spermine exhibits a decrease in charge transfer resistance. Here, the ligand’s interaction leads to electrostatic shielding of the negatively charged DNA backbone. The impedance changes have been evaluated in dependence on the concentration of both DNA binders. Furthermore, the association of a single‐stranded binding protein (SSBP) is found to cause an increase in charge transfer resistance only when incubated with single‐stranded DNA. The specific binding of an anti‐dsDNA antibody to the dsDNA‐modified electrode surface decreases in contrast the interfacial impedance.  相似文献   

2.
A highly effective strategy for quantification of plasmid which was a special dsDNA based on bisPNA by electrochemical impedance spectroscopy was presented in this work. Firstly, through Au?S bond, thiol‐terminated bisPNA probes were immobilized onto the gold electrode surface. Then bisPNA probes directly hybridized with target plasmid DNA pBR322 based on the PNA.DNA‐PNA invasion triplex without denaturation. In the presence of redox electroactive ions [Fe(CN)6]3?/4? as hybridization indicator, the charge transfer resistance (Rct) was produced, and Rct was measured via electrochemical impedance spectroscopy. Under optimal conditions, this strategy showed a good linear relationship between the ΔRct which was the difference of Rct obtained before and after bisPNA hybridized with plasmid pBR322, and logarithm of the concentration of plasmid pBR322 within the range from 1 nM to 100 nM (R2=0.993), with a limit of detection (LOD) of 0.1 nM. Furthermore, this bisPNA‐assisted biosensor showed good stability and satisfactory analytical reliability. In addition, this novel bisPNA‐assisted biosensor also exhibited excellent analytical results in human serum.  相似文献   

3.
This paper reports on a facile method for synthesizing gold nanoparticles (AuNps) with diameter around 5 nm encapsulated with water‐soluble polythiophene sulfonate poly[2‐(3‐thienyl)ethyloxy‐4‐butylsulfonate] sodium salt (PTS) and their physical–chemical characterization. The synthesis of hybrid materials of polythiophene derivatives and gold nanoparticles is a way to improve the polymer properties, mainly in application for chemical and optical sensing platforms. The AuNps were prepared by reducing gold salt with acid aqueous sodium citrate by the Turkvich method in the presence of PTS, and both PTS and citrate helped to stabilize the AuNps. The suspensions of AuNp:PTS presented good chemical and photostability for long period of storage. The nanoparticles encapsulated with the polymer presented smaller diameters than those obtained using only sodium citrate, according to scanning electron microscopy images. The AuNps obtained were used for fabrication LbL films with commercial chitosan, which were characterized by impedance spectroscopy measurements. The results showed that the charge transfer resistance values (Rct) decrease as the average diameter of the AuNps decreases and the proportion of PTS increases in the nanocomposite. Such increase of the nanocomposite conductivity, given by the low values of Rct, indicates that the novel film architecture developed is promising for chemical sensing applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1245–1254  相似文献   

4.
A label-free aptasensor for platelet-derived growth factor (PDGF) protein is reported. The aptasensor uses mixed self-assembled monolayers (SAMs) composed of a thiol-modified PDGF binding aptamer and 6-mercaptohexanol (MCH) on a gold electrode. The SAMs were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) before and after binding of the protein using [Fe(CN)6]3−/4−, a redox marker ion as an indicator for the formation of a protein-aptamer complex. The CVs at the PDGF modified electrode showed significant differences, such as changes in the peak currents and peak-to-peak separation, before and after binding of the target protein. The EIS spectra, in the form of Nyquist plots, were analyzed with a Randles circuit while the electron transfer resistance Rct was used to monitor the binding of the target protein. The results showed that, without any modification to the aptamer, the target protein can be recognized effectively at the PDGF binding aptamer SAMs at the electrode surface. Control experiments using non-binding oligonucleotides assembled at the electrode surfaces also confirmed the results and showed that there was no formation of an aptamer-protein complex. The DPV signal at the aptamer functionalized electrode showed a linearly decreased marker ion peak current in a protein concentrations range of 1-40 nM. Thus, label-free detection of PDGF protein at an aptamer modified electrode has been demonstrated.  相似文献   

5.
Chloramphenicol (CAP) has been widely used to treat bacterial infections in livestock and aquatic animals. To reduce the risk of CAP residues, an efficient technology to rapidly detect CAP residues in animal-sourced food is expressly needed. In this study, magnetic bead-based systematic evolution of ligands by exponential enrichment (Mag-SELEX) strategy was performed to select and identify CAP-specific single-stranded DNA (ssDNA) aptamers from a random oligonucleotide library. After nine rounds of selection, five potential ssDNA aptamers were selected. Low homology indicated that they might belong to different families. To identify an aptamer with the highest affinity for CAP, the dissociation constant (K d) values of these selected aptamers were determined. The lowest K d values of two potential aptamers (i.e., No. 4 and No. 5) were, respectively, 0.10162 ± 0.0111 and 0.03224 ± 0.00819 μM, which were much lower than previously reported lowest K d value (i.e., 0.766 μM) of CAP aptamer. Moreover, compared with No. 4, aptamer No. 5 had higher binding rate, which is quite different among those with CAP and with CAP’s structural analogs (i.e., thiamphenicol (TAP) and florfenicol (FF)). These results indicated that the potential aptamer No. 5 with highest specificity and affinity for CAP would be an ideal aptamer for future detection of residual CAP in animal-sourced food.  相似文献   

6.
《Electroanalysis》2018,30(8):1847-1854
Current demand for a stable, low cost and sensitive malaria sensor has prompted to explore novel recognition systems that can substitute widely used protein based labile biorecognition elements to be used in point of care diagnostic devices. Here, we report a novel ssDNA aptamer of 90 mer sequence developed by SELEX process against HRP‐II, a specific biomarker for Plasmodium falciparum strains. High stability of the secondary structure of the isolated aptamer was discerned from its free energy of folding of −20.40 kcal mole−1. The binding constant (Kd) of the aptamer with HRP‐II analysed by isothermal titration calorimetry was ∼1.32 μM. Circular dichroism studies indicated B form of the aptamer DNA. The aptamer was chemically immobilized on a gold electrode surface through a self‐assembled monolayer of dithio‐bis(succinimidyl) propionate to produce the aptasensor. The step wise modification of the layers over the gold electrode during fabrication of the aptasensor was confirmed by cyclic voltammetry. The aptasensor was then challenged with different concentration of HRP‐II and analysed the interaction signals through electrochemical impedance spectroscopy. The impedance signal behaved reciprocally with the increasing concentrations of the target in the sample from which a dynamic range of 1 pM–500 pM (R2=0.99) and LOD of ∼3.15 pM were discerned. The applicability of the developed aptasensor to detect HRP‐II in mimicked real sample was also validated.  相似文献   

7.
The impedimetric aptasensor for Thrombin (THR) was developed for the first time herein by measuring changes at the charge‐transfer resistance, Rct upon to protein? aptamer complex formation. After covalent activation of pencil graphite electrode (PGE) surface using covalent agents, amino linked aptamer (APT) was immobilized onto activated PGE surface. Then APT‐THR interaction was explored by electrochemical impedance spectroscopy (EIS). After the optimization of experimental conditions (e.g., APT and THR concentration, immobilization and interaction times), the selectivity of impedimetric aptasensor was tested in the presence of other biomolecules: factor Va and bovine serum albumine (BSA) both in buffer media, or in diluted fetal bovine serum (FBS).  相似文献   

8.
A strategy for the detection of anthrax, which is a potential biological weapon by using an electrochemical genosensing technology, is investigated. An alkanathiol‐linked or unlabeled capture probe related to B. anthracis is immobilized onto gold or graphite electrode surface. A 101‐mer anthrax target is used for hybridization. The extent of hybridization between probe and target sequences is determined by using differential pulse voltammetry (DPV) and electrochemical impedance spectrometry (EIS). EIS analysis are based on electron transfer resistance (Rct) in the presence of [Fe(CN)6]3?/4? and DPV measurements are based on transduction of both guanine oxidation and Meldola's blue (MDB) reduction signal as hybridization indicator. The response of the probe‐modified electrodes which was interacted with a noncomplementary sequence was the same as the responses of probe‐modified surface and proved the specifity of the hybridization with the target. According to these results the developed genosensors based on EIS and DPV techniques can be employed for rapid and selective detection of B. anthracis.  相似文献   

9.
LIU  Xueping  ZHOU  Zhenhua  ZHANG  Liangliang  TAN  Zhongyang  SHEN  Guoli  YU  Ruqin 《中国化学》2009,27(10):1855-1859
A simple and rapid colorimetric approach for the determination of adenosine has been developed via target inducing aptamer structure switching, thus leading to Au colloidal solution aggregation. In the absence of the analytes, the aptamer/gold nanoparticle (Au NP) solution remained well dispersed under a given high ionic strength condition in that the random‐coil aptamer was readily wrapped on the surface of the Au NPs, which resulted in the enhancement of the repulsive force between the nanoparticles due to the high negative charge density of DNA molecules. While in the presence of adenosine, target‐aptamer complexes were formed and the conformation of the aptamer was changed to a folded structure which disfavored its adsorption on the Au NP surface, thus leading to the reduction of the negative charge density on each Au NP and then the reduced degree of electrostatic repulsion between Au nanoparticles. As a result, the aggregation of the Au colloidal solution occurred. The changes of the absorption spectrum could be easily monitored by a UV‐Vis spectrophotometer. A linear correlation exists between the ratio of the absorbance of the system at 522 to 700 nm (A522 nm/A700 nm) and the concentration of adenosine between 100 nmol·L?1 and 10 µmol·L?1, with a detection limit of 51.5 nmol·L?1.  相似文献   

10.
A label‐free immunosensor for the detection of HbA1c was developed based on gold nanoparticle (AuNP)‐aryl diazonium salt modified glassy carbon (GC) electrode where transduction is achieved using electrochemical impedance spectroscopy (EIS). GC electrodes were first modified with 4‐aminophenyl (Ph‐NH2) layers to which AuNPs were attached. Thereafter an oligo(ethylene glycol) (OEG‐COOH) species were covalently attached to the remaining free amine groups on the Ph‐NH2 surface. The AuNP surfaces were further modified with Ph‐NH2 followed by attachment of a glycosylated pentapeptide (GPP), an analogon to HbA1c. Exposure of this interface to anti‐HbA1c IgG resulted in a change in charge transfer resistance (Rct) due to the anti‐HbA1c IgG selectively complexing to the surface bound GPP. To detect the amount of HbA1c, a competitive inhibition assay was employed where the surface bound GPP and HbA1c in solution compete for the anti‐HbA1c IgG antibodies. The higher the concentration of HbA1c, the less antibody binds to the sensing interface and the lower the change of Rct. The response of the immunosensor is linear with the HbA1c% of total haemoglobin in the range of 0%–23.3%. This competitive inhibition assay can be used for the detection of HbA1c in human blood. The performance of the immunosensor for detection of HbA1c in human blood is comparable to the clinical laboratory method.  相似文献   

11.
A label‐free DNA biosensor based on three‐dimensional reduced graphene oxide (3D‐rGO) and polyaniline (PANI) nanofibers modified glassy carbon electrode (GCE) was successfully developed for supersensitive detection of breast cancer BRCA1. The results demonstrated that 3D‐rGO and PANI nanofibers had synergic effects for reducing the charge transfer resistance (Rct), meaning a huge enhancement in electrochemical activity of 3D‐rGO‐PANI/GCE. Probe DNA could be immobilized on 3D‐rGO‐PANI/GCE for special and sensitive recognition of target DNA (1.0×10?15–1.0×10?7 M) with a theoretical LOD of 3.01×10?16 M (3S/m). Furthermore, this proposed nano‐biosensor could directly detect BRCA1 in real blood samples.  相似文献   

12.
An amplified electrochemical impedimetric aptasensor for ochratoxin A (OTA) was developed with picomolar sensitivity. A facile route to fabricate gold nanoparticles covalently bound reduced graphene oxide (AuNPs–rGO) resulted in a large number of well-dispersed AuNPs on graphene sheets with tremendous binding sites for DNA, since the single rGO sheet and each AuNP can be loaded with hundreds of DNA strands. An aptasensor with sandwich model was fabricated which involved thiolated capture DNA immobilized on a gold electrode to capture the aptamer, then the sensing interface was incubated with OTA at a desired concentration, followed by AuNPs–rGO functionalized reporter DNA hybridized with the residual aptamers. By exploiting the AuNPs–rGO as an excellent signal amplified platform, a single hybridization event between aptamer and reporter DNA was translated into more than 107 redox events, leading to a substantial increase in charge-transfer resistance (Rct) by 7∼ orders of magnitude compared with that of the free aptamer modified electrode. Such designed aptasensor showed a decreased response of Rct to the increase of OTA concentrations over a wide range of 1 pg mL−1–50 ng mL−1 and could detect extremely low OTA concentration, namely, 0.3 pg mL−1 or 0.74 pM, which was much lower than that of most other existed impedimetric aptasensors. The signal amplification platform presented here would provide a promising model for the aptamer-based detection with a direct impedimetric method.  相似文献   

13.
The reaction of (η5‐(N,N‐dimethylaminomethyl)cyclopentadien‐yl)(η4‐tetraphenylcyclobutadiene)cobalt with sodium tetrachloropalladate and (R)‐N‐acetylphenylalanine gave planar chiral palladacycle di‐μ‐chloridebis[(η5‐(Sp)‐2‐(N,N‐dimethylaminomethyl)cyclopentadienyl,1‐C,3′‐N)(η4‐tetraphenylcyclobutadiene)cobalt]dipalladium [(Sp)‐Me2‐CAP‐Cl] in 92 % ee and 64 % yield. Enantiopurity (>98 % ee) was achieved by purification of the monomeric (R)‐proline adducts and conversion back to the chloride dimer. Treatment with AgOAc gave (Sp)‐Me2‐CAP‐OAc which was applied to asymmetric transcyclopalladation (up to 78 % ee). The (R)‐N‐acetylphenylalanine mediated palladation methodology was applicable also to the corresponding N,N‐diethyl (82 % ee, 39 % yield) and pyrrolidinyl (>98 % ee, 43 % yield) cobalt sandwich complexes. A combination of 5 mol % of the latter [(Sp)‐Pyrr‐CAP‐Cl] and AgNO3 (3.8 equiv) is a catalyst for the allylic imidate rearrangement of an (E)‐N‐aryltrifluoroacetimidate (up to 83 % ee), and this catalyst system is also applicable to the rearrangement of a range of (E)‐trichloroacetimidates (up to 99 % ee). This asymmetric efficiency combined with the simplicity of catalyst synthesis provides accessible solutions to the generation of non‐racemic allylic amine derivatives.  相似文献   

14.
The bovine herpesvirus type 1 (BHV‐1) is a pathogen of great economic impact for livestock, which is related multi‐systemic infections that leads to mortality or morbidity of cattles. Thus, the search for cheap and practical methodologies that allow the selective detection of BHV‐1 antigen (BHV‐1 AG) is of utmost relevance. Therefore, an impedimetric label‐free immunosensor was herein, developed and its performance evaluated in biological samples enriched with BHV‐1 AG. Briefly, the biosensor construction was based on the immobilization of BHV‐1 antibody (BHV‐1 AB) and casein on the activated glassy carbon electrode surface. The BHV‐1 AB was isolated from egg yolk of immunized chickens, which is a less stressful protocol. The bio sensing principle was based on Electrochemical Impedance Spectroscopy by using Fe(CN)64?/3? probe, which were also used to check variation of charge transfer resistance (?Rct), when the electrode surface was increasingly blocked by immune complex. A linear relationship between ?Rct and BHV‐1 AG concentration was verified in the range from 10 to 50 TCID50 mL?1, with LOQ of 2.00 TCID50 mL?1 and LOD of 0.66 TCID50 mL?1. Besides the suitable sensitivity, the immunosensor displayed accuracy, stability, and specificity to detect BHV‐1 AG in biological samples of serum, nasal secretions, semen and urine. Moreover, to the best of our knowledge this is the first immunosensor applied to BHV‐1 diagnostic.  相似文献   

15.
Bismuth film modified and chemically activated carbon micro‐thread electrodes were investigated for the simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry. The carbon thread electrode was characterised using both surface and electrochemical techniques. Electrochemical impedance spectroscopy (EIS) studies demonstrated that the H2SO4/IPA‐treated carbon thread electrode showed a much improved resistance response (Rct=23 Ω) compared to the IPA‐untreated carbon thread (Rct=8317 Ω). Furthermore, parameters such as the effect of deposition potential, deposition time and Bi(III) concentration were explored using square wave voltammetry. Detection limits (S/N=3) for Cd(II) and Pb(II) were found to be 1.08 µg L?1 and 0.87 µg L?1, respectively and response was found to be linear over the range 5–110 µg L?1. The proposed Bi/IPA‐treated carbon thread electrode exhibited a high selectivity towards Cd(II) and Pb(II) even in the presence of a range of heavy metals and is capable of repetitive and reproducible measurements, being attributed to the high surface area, geometry and electrode treatment characteristics. The proposed metal ion sensor was employed to determine cadmium and lead in river water samples and % RSD was found to be 5.46 % and 5.93 % for Cd(II) and Pb(II) respectively (n=3). Such facile sensing components favour the development of cost effective portable devices for environmental sample analysis and electrochemical applications.  相似文献   

16.
A correct representation of the short‐range contributions such as exchange‐repulsion (E rep) and charge‐transfer (E ct) is essential for the soundness of separable, anisotropic polarizable molecular mechanics potentials. Within the context of the SIBFA procedure, this is aimed at by explicit representations of lone pairs in their expressions. It is necessary to account for their anisotropic behaviors upon performing not only in‐plane, but also out‐of‐plane, variations of a probe molecule or cation interacting with a target molecule or molecular fragment. Thus, E rep and E ct have to reproduce satisfactorily the corresponding anisotropies of their quantum chemical (QC) counterparts. A significant improvement of the out‐of‐plane dependencies was enabled when the sp2 and sp localized lone‐pairs are, even though to a limited extent, delocalized on both sides of the plane, above and below the atom bearer but at the closely similar angles as the in‐plane lone pair. We report calibration and validation tests on a series of monoligated complexes of a probe Zn(II) cation with several biochemically relevant ligands. Validations are then performed on several polyligated Zn(II) complexes found in the recognition sites of Zn‐metalloproteins. Such calibrations and validations are extended to representative monoligated and polyligated complexes of Mg(II) and Ca(II). It is emphasized that the calibration of all three cations was for each ΔE contribution done on a small training set bearing on a limited number of representative N , O , and S monoligated complexes. Owing to the separable nature of ΔE , a secure transferability is enabled to a diversity of polyligated complexes. For these the relative errors with respect to the target ΔE (QC) values are generally < 3%. Overall, the article proposes a full set of benchmarks that could be useful for force field developers. © 2017 Wiley Periodicals, Inc.  相似文献   

17.
We report here a facile method to immobilize zirconia nanoparticles on a disposable screen‐printed carbon electrode (designated as ZrO2‐SPCE) for phosphate sensor application. Simply by ultrasonicating a bare SPCE in a ZrO2 slurry, ZrO2 nanoparticles can be immobilized effectively on the electrode surface as verified by surface characterization evidences. Using ferricyanide as a redox probe, an increase in the charge transfer resistance (Rct) of ferricyanide upon adsorption of phosphate on ZrO2 is used for the determination of phosphate. This ZrO2‐SPCE phosphate sensor shows a wide linear range up to 1 mM and a detection limit of 1.69 µM (S/N=3). Practical applicability of the ZrO2‐SPCE is demonstrated by detecting phosphate content in human blood samples.  相似文献   

18.
The crystal structure and electrochemical intercalation kinetics of spinel LiNi0.5Mn1.5O4 such as the resistance of a solid electrolyte interphase (SEI) film, charge transfer resistance (R ct), surface layer capacitance, exchange current density (i 0), and chemical diffusion coefficient are evaluated by Fourier transform infrared (FT-IR) and electrochemical impedance spectroscopy (EIS), respectively. FT-IR shows that LiNi0.5Mn1.5O4 thus obtained has a cubic spinel structure, which can be indexed in a space group of Fd3m with a disordering distribution of Ni. EIS indicates that R s is almost a constant at different states of charge. The thickness of SEI film increases with increasing of the cell voltage. R ct values evidently decreases when lithium ions deintercalated from the cathode in the voltage range from OCV to 4.6 V, and R ct value increases with increasing potential of deintercalation over 4.7 V. i 0 varies between 0.2 and 1.6 mA cm?2, and the solid phase diffusion coefficient of Li+ changed depending on the electrode potential in the range of 10?11–10?9 cm2 s?1.  相似文献   

19.
A structural investigation of the incommensurately ordered compound Mn0.55Ta0.45O1.7 has been carried out, using single‐crystal X‐ray diffraction data. The basic structure is related to the fluorite type with a monoclinic distortion. Electron diffraction (ED) patterns for various crystal orientations were used for determination of unit cell, incommensurate modulation vector and superspace group. The unit cell parameters and the length and direction of the incommensurate vector were refined using X‐ray powder diffraction (XRPD) data. P2/m was chosen as the three‐dimensional space group for a subcell with parameters a = 3.5005(2) Å (√2/2 · af), b = 3.5730(2) (√2/2 · af), c = 5.0015(2) Å (af) and β = 91.677(7)°. From the systematic absences hklm: k + m ≠ 2n, the four‐dimensional superspace group was determined to be B : P2/m(α 0 c) with determined modulation vector components α = –0.1833(1) and γ = 0.3582(2). A total of 511 unique reflections (79 basic fluorite type, 268 first‐order and 164 second‐order satellites) were used in the structure refinement, which resulted in weighted R‐values of 5.6% for the fluorite type sublattice reflections, 5.5% for the first‐order satellites and 7.4% for the second‐order satellites. The Mn and Ta atoms were found to be both positionally and occupationally modulated and the oxygen atoms to be highly disordered. The structure is the first fluorite‐related modulated structure of an oxide that has been determined from single‐crystal data. The structural relation to the previously characterised disordered cubic phase Mn0.6Ta0.4O1.65 and the diffuse scattering exhibited by it are discussed in the article.  相似文献   

20.
The stereoselective epoxidation of styrene was catalyzed by H2O2‐dependent cytochrome P450SPα in the presence of carboxylic acids as decoy molecules. The stereoselectivity of styrene oxide could be altered by the nature of the decoy molecules. In particular, the chirality at the α‐positions of the decoy molecules induced a clear difference in the chirality of the product: (R)‐ibuprofen enhanced the formation of (S)‐styrene oxide, whereas (S)‐ibuprofen preferentially afforded (R)‐styrene oxide. The crystal structure of an (R)‐ibuprofen‐bound cytochrome P450SPα (resolution 1.9 Å) revealed that the carboxylate group of (R)‐ibuprofen served as an acid–base catalyst to initiate the epoxidation. A docking simulation of the binding of styrene in the active site of the (R)‐ibuprofen‐bound form suggested that the orientation of the vinyl group of styrene in the active site agreed with the formation of (S)‐styrene oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号