共查询到8条相似文献,搜索用时 15 毫秒
1.
Chevreux S Llorens I Solari PL Roudeau S Devès G Carmona A Testemale D Hazemann JL Ortega R 《Electrophoresis》2012,33(8):1276-1281
Extended X-ray absorption fine structure (EXAFS) has already provided high-resolution structures of metal-binding sites in a wide variety of metalloproteins. Usually, EXAFS is performed on purified metalloproteins either in solution or crystallized form but purification steps are prone to modify the metallation state of the protein. We developed a protocol to couple EXAFS analysis to metalloprotein separation using native gel electrophoresis. This coupling opens a large field of applications as metalloproteins can be characterized in their native state avoiding purification steps. Using native isoelectric focusing, the method enables the EXAFS analysis of metalloprotein pI isoforms. We applied this methodology to SOD1, wild-type, and Ala4Val mutant (A4V), a mutation found in amyotrophic lateral sclerosis (ALS) because decreased Zn affinity to SOD1 mutants is suggested to be involved in the pathogenesis of this neurodegenerative disease. We observed similar coordination structures for Zn in wild-type and mutant proteins, in all measured pI isoforms, demonstrating the feasibility of EXAFS on electrophoresis gels and suggesting that the Zn-binding site is not structurally modified in A4V SOD1 mutant. 相似文献
2.
The DNA binding protein, TDP43 is a major protein involved in amyotrophic lateral sclerosis and other neurological disorders such as frontotemporal dementia, Alzheimer disease, etc. In the present study, we have designed possible siRNAs for the glycine rich region of tardbp mutants causing ALS disorder based on a systematic theoretical approach including (i) identification of respective codons for all mutants (reported at the protein level) based on both minimum free energy and probabilistic approaches, (ii) rational design of siRNA, (iii) secondary structure analysis for the target accessibility of siRNA, (iii) determination of the ability of siRNA to interact with mRNA and the formation/stability of duplex via molecular dynamics study for a period of 15 ns and (iv) characterization of mRNA–siRNA duplex stability based on thermo-physical analysis. The stable GC-rich siRNA expressed strong binding affinity towards mRNA and forms stable duplex in A-form. The linear dependence between the thermo-physical parameters such as Tm, GC content and binding free energy revealed the ability of the identified siRNAs to interact with mRNA in comparable to that of the experimentally reported siRNAs. Hence, this present study proposes few siRNAs as the possible gene silencing agents in RNAi therapy based on the in silico approach. 相似文献
3.
Regulation of copper/zinc and manganese superoxide dismutase by UVB irradiation, oxidative stress and cytokines 总被引:3,自引:0,他引:3
Kirsi Isoherranen Ville Peltola Leena Laurikainen Juha Punnonen Jarmo Laihia Markku Ahotupa Kari Punnonen 《Journal of photochemistry and photobiology. B, Biology》1997,40(3):288-293
4.
Yan-Su Guo Dong-Xia Wu Hong-Ran Wu Shu-Yu Wu Cheng Yang Bin Li Hui Bu Yue-sheng Zhang Chun-Yan Li 《Experimental & molecular medicine》2009,41(3):140-150
A subset of patients of amyotrophic lateral sclerosis (ALS) present with mutation of Cu/Zn superoxide dismutase 1 (SOD1), and such mutants caused an ALS-like disorder when expressed in rodents. These findings implicated SOD1 in ALS pathogenesis and made the transgenic animals a widely used ALS model. However, previous studies of these animals have focused largely on motor neuron damage. We report herein that the spinal cords of mice expressing a human SOD1 mutant (hSOD1-G93A), besides showing typical destruction of motor neurons and axons, exhibit significant damage in the sensory system, including Wallerian-like degeneration in axons of dorsal root and dorsal funiculus, and mitochondrial damage in dorsal root ganglia neurons. Thus, hSOD1-G93A mutation causes both motor and sensory neuropathies, and as such the disease developed in the transgenic mice very closely resembles human ALS. 相似文献
5.
6.
Biomarker discovery is a central application in today's proteomic research. There is an urgent need for valid biomarkers to improve diagnostic tools and treatment in many disorders, such as the rapidly progressing neurodegenerative disorder amyotrophic lateral sclerosis (ALS) that has a fatal outcome in about 3 years and yet no curative treatment. Screening for clinically relevant biomarkers puts high demands on high-throughput, rapid and precise proteomic techniques. There is a large variety in the methods of choice involving mainly gel-based approaches as well as chromatographic techniques for multi-dimensional protein and peptide separations followed by mass spectrometry (MS) analysis. This special feature article will discuss some important aspects of MS-based clinical proteomics and biomarker discovery in the field of neurodegenerative diseases and ALS research respectively, with the aim to provide a prospective view on current and future research aspects in the field. Furthermore, examples for application of high-resolution MS-based proteomic strategies for ALS biomarker discovery will be demonstrated with two studies previously reported by our group. These studies include among others, utilization of capillary liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS) for advanced protein pattern classification in cerebrospinal fluid (CSF) samples of ALS patients as well as highly sensitive protein identification in minimal amounts of postmortem spinal cord tissue and laser micro-dissected motor neurons using FT-ICR-MS in conjunction with nanoflow LC coupled to matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (LC-MALDI-TOF-TOF-MS). 相似文献
7.
Eun Jin Yoon Hyo-Jin Park Goo-Young Kim Hyungmin Cho Jung-Ha Choi Hye-Yoon Park Ja-Young Jang Hyangshuk Rhim Seongman Kang 《Experimental & molecular medicine》2009,41(9):611-617
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the degeneration of motor neurons. Mutations in Cu/Zn superoxide dismutase (SOD1), including G93A, were reportedly linked to familial ALS. SOD1 is a key antioxidant enzyme, and is also one of the major targets for oxidative damage in the brains of patients suffering from Alzheimer''s disease (AD). Several lines of evidence suggest that intracellular amyloid beta (Aβ) is associated with the pathogenesis of AD. In this report we demonstrate that intracellular Aβ directly interacts with SOD1, and that this interaction decreases the enzymatic activity of the enzyme. We observed Aβ-SOD1 aggregates in the perinuclear region of H4 cells, and mapped the SOD1 binding region to Aβ amino acids 26-42. Interestingly, intracellular Aβ binds to the SOD1 G93A mutant with greater affinity than to wild-type SOD1. This resulted in considerably less mutant enzymatic activity. Our study implicates a potential role for Aβ in the development of ALS by interacting with the SOD1 G93A mutant. 相似文献