首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we designed four peptides appended with different numbers of histidine (Hisn‐peptide). We launched a systematic investigation on quantum dots (QDs) and Hisn‐peptide self‐assembly in solution using fluorescence coupled CE (CE‐FL). The results indicated that CE‐FL was a powerful method to probe how ligands interaction on the surface of nanoparticles. The self‐assembly of QDs and peptide was determined by the numbers of histidine. We also observed that longer polyhistidine tags (n ≤ 6) could improve the self‐assembly efficiency. Furthermore, the formation and separation of QD‐peptide assembly were also studied by CE‐FL inside a capillary. The total time for the mixing, self‐assembly, separation, and detection was less than 10 min. Our method greatly expands the application of CE‐FL in QDs‐based biolabeling and bioanalysis.  相似文献   

2.
《Electrophoresis》2018,39(8):1086-1095
The chiral organic‐inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open‐tubular capillary electrochromatography (OT‐CEC). Hence, a novel protocol for the preparation of an OT column coated with nano‐amylose‐2,3‐bis(3,5‐dimethylphenylcarbamate) (nano‐ABDMPC)‐silica hybrid sol through in situ layer‐by‐layer self‐assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano‐ABDMPC‐silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano‐ABDMPC bearing 3‐(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano‐ABDMPC bearing 3‐(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1‐phenyl‐2‐propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run‐to‐run, day‐to‐day and column‐to‐column. These results demonstrated the promising applicability of nano‐ABDMPC‐silica hybrid sol coated OT column in CEC enantioseparations.  相似文献   

3.
Despite the numerous techniques developed for the studying nanoparticle and peptide interaction nowadays, sensitive and convenient assay in the process of flow, especially to simulate the self‐assembly of quantum dots (QDs) and peptide inflow in blood vessels, still remains big challenges. Here, we report a novel assay for studying the self‐assembly of QDs and peptide, based on CE using a bending capillary. We demonstrate that the semicircles numbers of the bending capillary affect the self‐assembly kinetics of CdSe/ZnS QDs and ATTO‐D3LVPRGSGP9G2H6 peptide. Moreover, benefitting from this novel assay, the effect of the position on the self‐assembly has also been realized. More importantly, we also demonstrate that this novel assay can be used for studying the stability of the QDs–peptide complex inflow. We believe that our novel assay proposed in this work could be further used as a general strategy for the studying nanoparticle–biomolecule interaction or biomolecule–biomolecule interaction.  相似文献   

4.
Herein, we report an assay for detecting the binding of a multivalent peptide and antibody within a capillary with the use of fluorescence coupled capillary electrophoresis. Quantum dots and a c‐Myc tag containing peptide EQKLISEEDLG4H6 were injected sequentially and formed a multivalent quantum dot‐EQKLISEEDLG4H6 assembly within the capillary. The efficiency of the quantum dot‐peptide self‐assembly was affected by the peptide/quantum dot molar ratio, sampling time, and interval time. Finally, the binding of the monoclonal anti‐c‐Myc antibody and the multivalent quantum dot‐EQKLISEEDLG4H6 ligand was studied using an in‐capillary assay. The microscopic dissociation constant for the self‐assembly of monoclonal anti‐c‐Myc antibody and quantum dot‐EQKLISEEDLG4H6 was determined to be 14.1 μM with a stoichiometry of the peptide‐antibody complex of 1.7 determined after fitting this to the Hill equation. This method can be further extended to detect a wide range of biomolecule–biomolecule binding interactions.  相似文献   

5.
Totally porous lipid‐based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas®, 6.7 cm effective length). In the absence of nanoparticles, i.e. in CE mode, the protein samples adsorbed completely to the capillary walls and could not be recovered. In contrast, nanoparticle‐based capillary electroseparation resolved green fluorescent protein from several of its impurities within 1 min. Furthermore, a mixture of native green fluorescent protein and two of its single‐amino‐acid‐substituted variants was separated within 2.5 min with efficiencies of 400 000 plates/m. The nanoparticles prevent adsorption by introducing a large interacting surface and by obstructing the attachment of the protein to the capillary wall. A one‐step procedure based on self‐assembly of lipids was used to prepare the nanoparticles, which benefit from their biocompatibility and suspension stability at high concentrations. An aqueous tricine buffer at pH 7.5 containing lipid‐based nanoparticles (2% w/w) was used as electrolyte, enabling separation at protein friendly conditions. The developed capillary‐based method facilitates future electrochromatography of proteins on polymer‐based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development.  相似文献   

6.
Inspired by the distinct chemical and physical properties of nanoparticles, here a novel open‐tubular capillary electrochromatography column was prepared by electrostatic assembly of poly(diallydimethylammonium chloride) onto the inner surface of a fused‐silica capillary, followed by self‐adsorption of negatively charged SH‐β‐cyclodextrin/gold nanoparticles. The formation of the SH‐β‐cyclodextrin/gold nanoparticles coated capillary was confirmed and characterized by scanning electron microscopy and energy dispersive spectrometry. The results of scanning electron microscopy and energy dispersive spectrometry studies indicated that SH‐β‐cyclodextrin/gold nanoparticles were successfully coated on the inner wall of the capillary column. The performance of the SH‐β‐cyclodextrin/gold nanoparticles coated capillary was validated by the analysis of six pairs of chiral drugs, namely zopiclone, carvedilol, salbutamol, terbutaline sulfate, phenoxybenzamine hydrochloride, and ibuprofen. Satisfactory enantioseparation results were achieved, confirming the use of gold nanoparticles as the support could enhance the phase ratio of the open‐tubular capillary column. Additionally, the stability and reproducibility of the SH‐β‐cyclodextrin/gold nanoparticles coated capillary column were also investigated. Then, this proposed method was well validated with good linearity (≥0.999), recovery (90.0–93.5%) and repeatability, and was successfully used for enantioseparation of ibuprofen in spiked plasma samples, which indicated the new column's potential usage in biological analysis.  相似文献   

7.
Herein, we report a technique for detecting the fast binding of antibody‐peptide inside a capillary. Anti‐HA was mixed and interacted with FAM‐labeled HA tag (FAM‐E4) inside the capillary. Fluorescence coupled capillary electrophoresis (CE‐FL) was employed to measure and record the binding process. The efficiency of the antibody‐peptide binding on in‐capillary assays was found to be affected by the molar ratio. Furthermore, the stability of anti‐HA‐FAM‐E4 complex was investigated as well. The results indicated that E4YPYDVPDYA (E4) or TAMRA‐E4YPYDVPDYA (TAMRA‐E4) had the same binding priorities with anti‐HA. The addition of excess E4 or TAMRA‐E4 could lead to partial dissociation of the complex and take a two‐step mechanism including dissociation and association. This method can be applied to detect a wide range of biomolecular interactions.  相似文献   

8.
Some nanoparticles, such as quantum dots (QDs), are widely used in the biological and biomedical fields due to their unique optical properties. However, little is currently known about the interaction between these nanoparticles and biomolecules. Herein, we systemically investigated the interaction between chaperonin GroEL and water‐soluble CdTe QDs based on fluorescence correlation spectroscopy (FCS), capillary electrophoresis, and fluorescence spectrometry. We observed that some water‐soluble CdTe QDs were able to enter the inner cavity of GroEL and formed an inclusion complex after the activation of chaperonin GroEL with ATP. The inclusion of GroEL was size‐selective to QDs and only small QDs were able to enter the inner cavity. The inclusion could suppress the fluorescence quenching of the QDs. Meanwhile, we evaluated the association constant between chaperonin GroEL and CdTe QDs by FCS. Our results further demonstrated that FCS was a very useful tool for study of the interaction of QDs and biomolecules.  相似文献   

9.
A new method using fluorescence coupled capillary electrophoresis (CE-FL) for monitoring self-assembly and proteolytic cleavage of hexahistidine peptide capped quantum dots (QDs) inside a capillary has been developed in this report. QDs and the ATTO 590-labeled hexahistidine peptide (H6-ATTO) were injected into a capillary, sequentially. Their self-assembly inside the capillary was driven by a metal-affinity force which yielded a new fluorescence signal due to Förster resonance energy transfer (FRET). The highly efficient separation of fluorescent complexes and the FRET process were analyzed using CE-FL. The self-assembly of QDs and biomolecules was found to effectively take place inside the capillary. The kinetics of the assembly was monitored by CE-FL, and the approach was extended to the study of proteolytic cleavage of surface conjugated peptides. Being the first in-depth analysis of in-capillary nanoparticle–biomolecule assembly, the novel approach reported here provides inspiration to the development of QD-based FRET probes for biomedical applications.  相似文献   

10.
Easy access to discrete nanoclusters in metal‐folded single‐chain nanoparticles (metal‐SCNPs) and independent ultrafine sudomains in the assemblies via coordination‐driven self‐assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1H NMR, dynamic light scattering, and NMR diffusion‐ordered spectroscopy results demonstrate self‐assembly into metal‐SCNPs (>70% imidazole‐units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self‐assembly of metal‐SCNPs (pH 4.6–5.0) and shrinkage (pH 5.0–5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6–7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub‐5‐nm subdomains in metal‐SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media‐tunable discrete ultrafine interiors in metal‐SCNPs and assemblies have hence been achieved.  相似文献   

11.
The assembly of inorganic nanoparticles (NPs) into 3D superstructures with defined morphologies is of particular interest. A novel strategy that is based on recrystallization‐induced self‐assembly (RISA) for the construction of 3D Cu2O superstructures and employs Cu2O mesoporous spheres with diameters of approximately 300 nm as the building blocks has now been developed. Balancing the hydrolysis and recrystallization rates of the CuCl precursors through precisely adjusting the experimental parameters was key to success. Furthermore, the geometry of the superstructures can be tuned to obtain either cubes or tetrahedra and was shown to be dependent on the growth behavior of bulk CuCl. The overall strategy extends the applicability of recrystallization‐based processes for the guided construction of assemblies and offers unique insights for assembling larger particles into complicated 3D superstructures.  相似文献   

12.
The coupling of proteins with self‐assembly properties and proteins that are capable of recognizing and mineralizing specific inorganic species is a promising strategy for the synthesis of nanoscale materials with controllable morphology and functionality. Herein, GPG‐AG3 protein fibers with both of these properties were constructed and served as templates for the synthesis of Pt and Pd nanotubes. The protein fibers of assembled GPG‐AG3 were more than 10 μm long and had diameters of 20–50 nm. The as‐synthesized Pt and Pd nanotubes were composed of dense layers of ~3–5 nm Pt and Pd nanoparticles. When tested as cathodes in lithium‐O2 batteries, the porous Pt nanotubes showed low charge potentials of 3.8 V, with round‐trip efficiencies of about 65 % at a current density of 100 mA g?1.  相似文献   

13.
Enantioselective open tubular capillary electrochromatography with carboxymethyl‐β‐cyclodextrin conjugated gold nanoparticles as stationary phase was developed. This novel open tubular column was fabricated through layer‐by‐layer self‐assembly of gold nanoparticles on a 3‐mercaptopropyl‐trimethoxysilane‐modified fused‐silica capillary and subsequent surface functionalization of the gold nanoparticles through self‐assembly of 6‐mercapto‐β‐cyclodextrin. The 6‐mercapto‐β‐cyclodextrin was firstly synthesized and determined by extensive spectroscopic data. Scanning electron microscopy, energy dispersive X‐ray analysis spectroscopy, and electroosmotic flow experiments were carried out to characterize the prepared open tubular column. Then, the separation effectiveness of the open tubular column was verified by two pairs of ɑ‐tetralones derivatives enantiomers and two pairs of basic drug enantiomers (tramadol hydrochloride and zopiclone) as mode analytes. Factors that influence the enantioseparation were optimized, and under the optimized conditions, satisfactory separation results were obtained for the four enantiomers: compound A, compound B, tramadol hydrochloride, and zopiclone with resolutions of 3.79, 1.56, 1.03, 1.60, respectively. For the combination of gold nanoparticles and negatively charged carboxymethyl‐β‐cyclodextrin, the open tubular column exhibited wider separation range for neutral and basic drugs. Moreover, the repeatability and stability of the column were studied through the run‐to‐run and day‐to‐day investigations.  相似文献   

14.
《Electrophoresis》2018,39(7):941-947
In this paper, β‐cyclodextrin (β‐CD) modified gold nanoparticles (AuNPs) coated open tubular column (OT column) was prepared for capillary electrochromatography. The open tubular column was constructed through self‐assembly of gold nanoparticles on 3‐mercaptopropyl‐trimethoxysilane (MPTMS) prederivatized capillary and subsequent modification of thiols β‐cyclodextrin (SH‐β‐CD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet visible spectroscopy were carried out to characterize the prepared open tubular column and synthesized gold nanoparticles. By comparing different coating times of gold nanoparticles and thiols β‐cyclodextrin, we got the optimal conditions for preparing the open tubular column. Also, the separation parameters were optimized including buffer pH, buffer concentration and applied voltage. Separation effectiveness of open tubular column was verified by the separation of four pairs of drug enantiomers including bifonazole, fexofenadine, omeprazole and lansoprazole, and satisfactory separation results were achieved for these analytes studied. In addition, the column showed good stability and repeatability. The relative standard deviation values less than 5% were obtained through intra‐day, inter‐day, and column‐to‐column investigations.  相似文献   

15.
The electrostatically derived self‐assembly of cationic Zn‐Cr‐layered double hydroxide (LDH) nanosheets and cationic CdS quantum dots (QDs) with anionic linkers leads to the formation of strongly coupled Zn‐Cr‐LDH–CdS nanohybrids. The hybridization with Zn‐Cr‐LDH leads to significant enhancement of the photocatalytic activity of CdS for visible‐light‐induced H2 generation, a property that is attributed to the depression of electron–hole recombination. In comparison with a direct hybridization method between oppositely charged species, this linker‐mediated method provides greater flexibility in controlling the chemical composition and electronic coupling of the nanohybrids. The present hybridization strategy provides a useful method not only to couple two kinds of isocharged nanostructured materials, but also to explore efficient hybrid‐type photocatalysts.  相似文献   

16.
Polymerization‐induced self‐assembly (PISA) has become the preferred method of preparing self‐assembled nano‐objects based on amphiphilic block copolymers. The PISA methodology has also been extended to the realization of colloidal nanocomposites, such as polymer–silica hybrid particles. In this work, we compare two methods to prepare nanoparticles based on self‐assembly of block copolymers bearing a core‐forming block with a reactive alkoxysilane moiety (3‐(trimethoxysilyl)propyl methacrylate, MPS), namely (i) RAFT emulsion polymerization using a hydrophilic macroRAFT agent and (ii) solution‐phase self‐assembly upon slow addition of a selective solvent. Emulsion polymerization under both ab initio and seeded conditions were studied, as well the use of different initiating systems. Effective and reproducible chain extension (and hence PISA) of MPS via thermally initiated RAFT emulsion polymerization was compromised due to the hydrolysis and polycondensation of MPS occurring under the reaction conditions employed. A more successful approach to block copolymer self‐assembly was achieved via polymerization in a good solvent for both blocks (1,4‐dioxane) followed by the slow addition of water, yielding spherical nanoparticles that increased in size as the length of the solvophobic block was increased. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 420–429  相似文献   

17.
The realization of controllable multicomponent self‐assembly through reversible supramolecular interactions is a challenging goal, and is an important strategy for the fabrication of switchable nanomaterials. Herein we show that the self‐assembly of TiO2 nanoparticles (NP) functionalized with methyl viologen can be controlled both by light irradiation and chemical reduction through cucurbit[8]uril‐enhanced radical cation dimerization interactions. Moreover, the controlled assembly and disassembly of this system are accompanied by switchable photocatalytic activity of the TiO2 NPs, which shows potential application as a novel smart and recyclable photocatalyst.  相似文献   

18.
The development in the synthesis and self‐assembly of patchy nanoparticles has resulted in the creation of complex hierarchical structures. Co‐assembly of polymeric nanoparticles and protein molecules combines the advantages of polymeric materials and biomolecules, and will produce new functional materials. Co‐assembly of positively charged patchy micelles and negatively charged bovine serum albumin (BSA) molecules is investigated. The patchy micelles, which were synthesized using block copolymer brushes as templates, leads to co‐assembly with protein molecules into vesicular structures. The average size of the assembled structures can be controlled by the molar ratio of BSA to patchy micelles. The assembled structures are dissociated in the presence of trypsin. The protein–polymer hybrid vesicles could find potential applications in medicine.  相似文献   

19.
This paper reports that Janus Au?Ni nanoparticles (JANNPs) can self‐assemble onto silica spheres in a novel way, which is different from that of single‐component isotropic nanoparticles. JANNPs modified with octadecylamine (ODA) assemble onto catechol‐modified silica spheres (SiO2?OH) to form a very special core–loop complex structure and finally the core–loop assemblies link each other to form large assemblies through capillary force and the hydrophobic interaction of the alkyl chains of ODA. The nanocomposites disassemble in the presence of vanillin and oleic acid because of the breakage of the catechol–metal link. Vanillin‐induced disassembly enables the JANNPs to reassemble into a core–loop structure upon ODA addition. The assembly of SiO2?OH and isotropic Ni or Fe3O4 particles generates traditional core–satellite structures. This unconventional self‐assembly can be attributed to the synergistic effect of Janus specificity and capillary force, which is also confirmed by the assembly of thiol‐terminated silica spheres (SH?SiO2) with anisotropic JANNPs, isotropic Au, and Ni nanoparticles. These results can guide the development of novel composite materials using Janus nanoparticles as the primary building blocks.  相似文献   

20.
The self‐assembly of dispersed polymer‐coated ferromagnetic nanoparticles into micron‐sized one‐dimensional mesostructures at a liquid–liquid interface was reported. When polystyrene‐coated Co nanoparticles (19 nm) are driven to an oil/water interface under zero‐field conditions, long (≈ 5 μm) chain‐like assemblies spontaneously form because of dipolar associations between the ferromagnetic nanoparticles. Direct imaging of the magnetic assembly process was achieved using a recently developed platform consisting of a biphasic oil/water system in which the oil phase was flash‐cured within 1 s upon ultraviolet light exposure. The nanoparticle assemblies embedded in the crosslinked phase were then imaged using atomic force microscopy. The effects of time, temperature, and colloid concentration on the self‐assembly process of dipolar nanoparticles were then investigated. Variation of either assembly time t or temperature T was found to be an interchangeable effect in the 1D organization process. Because of the dependence of chain length on the assembly conditions, we observed striking similarities between 1D nanoparticle self‐assembly and polymerization of small molecule monomers. This is the first in‐depth study of the parameters affecting the self‐assembly of dispersed, dipolar nanoparticles into extended mesostructures in the absence of a magnetic field. © 2008 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 46: 2267–2277, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号