首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel single‐walled carbon nanotube (SWNT) based biosensor for real‐time detection of organophosphate has been developed. Horizontally aligned SWNTs are assembled to desirable electrodes using AC dielectrophoresis technique. Organophosphorus hydrolase (OPH) immobilized on the SWNTs by nonspecific binding triggers enzymatic hydrolysis of organophosphates (OPs), such as paraoxon, consequently causing a detectable change in the conductance of the SWNTs. The conductance change is found to be correlated to the concentration of organophosphate. Our results suggest the novel biosensor has great potential to serve as a simple and reusable platform of sensing organophosphate on a real‐time basis.  相似文献   

2.
Single‐walled carbon nanotube (SWNT) based devices have been developed for the real‐time detection of nitrophenols in aqueous solution. SWNTs are assembled to electrodes using AC dielectrophoresis technique. The SWNT devices exhibit not only high sensitivity to nitrophenol compounds, but also good reusability. Charge transfer between nitro group and SWNTs, and the metal‐nanotube interface modification are hypothesized to be the possible origins of conductance change. These results indicated that the SWNT devices can be utilized as a simple, low cost, sensitive, and reusable platform for real‐time detection of nitrophenol compounds.  相似文献   

3.
Electrochemiluminescent biosensors are nowadays an established technology in the field of immunosensors and diagnostics. Along with the advent of nanotechnology, the marriage between electrochemiluminescence and nanomaterials results in promising enhancing strategies in many biosensor applications. Among nanomaterials, carbon-based ones are the most used, as (i) scaffolds, (ii) luminophores and (iii) electrode materials of the sensor. In this review, we describe the importance of a rational modification and functionalization of carbon nanomaterials to optimize electrochemiluminescence signal, and we also resume the latest and most relevant applications of electrochemiluminescent biosensors based on carbon nanomaterials.  相似文献   

4.
We have developed a high‐speed image processing CCD video camera for real‐time energy‐loss imaging using a conventional electron microscope with an energy‐loss imaging facility. As an initial demonstration of real‐time lock‐in energy‐loss imaging, a background‐subtracted energy‐loss image was observed by attaching the high‐speed image processing CCD video camera to an analytical electron microscope equipped with a floating‐type energy‐loss imaging analyser. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Carbon nanomaterials are receiving an increasingly large interest in a variety of fields, including also nanomedicine. In this area, much attention is devoted to investigating and modeling the behavior of these nanomaterials when they interact with biological fluids and with biological macromolecules, in particular proteins and oligopeptides. The interaction with these molecules is in fact crucial to understand and predict the efficacy of nanomaterials as drug carriers or therapeutic agents as well as their potential toxicity when they occupy the active site of a protein or severely affect the secondary and tertiary structure, or even the local dynamics, thus inhibiting their biological function. In this review, therefore, we describe the most recent work carried out in the last few years to model the interaction between carbon nanomaterials, either pristine or functionalized, and proteins or oligopeptides using classical atomistic methods, mainly molecular dynamics simulations. The attention is focused on 0-dimensional fullerenes, mainly C60, on 1-dimensional carbon nanotubes, mostly the single-walled armchair and some chiral ones, and on 2-dimensional graphene and graphyne, the latter containing also sp hybridized atoms in addition to the sp2 ones common to the other carbon nanomaterials.  相似文献   

6.
7.
Significant progress in the development of efficient and fast algorithms for quantum chemical calculations has been made in the past two decades. The main focus has always been the desire to be able to treat ever larger molecules or molecular assemblies—especially linear and sublinear scaling techniques are devoted to the accomplishment of this goal. However, as many chemical reactions are rather local, they usually involve only a limited number of atoms so that models of about 200 (or even less) atoms embedded in a suitable environment are sufficient to study their mechanisms. Thus, the system size does not need to be enlarged, but remains constant for reactions of this type that can be described by less than 200 atoms. The question then arises how fast one can obtain the quantum chemical results. This question is not directly answered by linear‐scaling techniques. In fact, ideas such as haptic quantum chemistry (HQC) or interactive quantum chemistry require an immediate provision of quantum chemical information which demands the calculation of data in “real time.” In this perspective, we aim at a definition of real‐time quantum chemistry, explore its realm and eventually discuss applications in the field of HQC. For the latter, we elaborate whether a direct approach is possible by virtue of real‐time quantum chemistry. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Real‐time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real‐time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real‐time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first‐principles potential and can be evaluated efficiently to deliver atomic forces as real‐time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real‐time reactivity exploration, we implement self‐consistent semiempirical methods as the data source and apply the surrogate‐potential mediator to deliver reliable real‐time feedback. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Since the discovery of carbon nanotubes (CNT), transmission electron microscopy (TEM) has been the most important tool in their investigation. It is possible to use electron irradiation in a TEM to construct a single-walled carbon nanotube (SWCNT) from an amorphous carbon film. Here we show that such a synthesis method creates a large number of carbon ad-atoms, which after some critical amount of radiation act to restore the system by reconstructing the carbon film. The behavior of the ad-atoms can be controlled by adjusting the current density in the microscope, suggesting that carbon nanomaterials can be tailored by electron irradiation.  相似文献   

10.
Unambiguous spectral assignments in 1H solution‐state NMR are central, for accurate structural elucidation of complex molecules, which is often hampered by signal overlap, primarily because of scalar coupling multiplets, even at typical high magnetic fields. The recent advances in homodecoupling methods have shown powerful means of achieving high resolution pure‐shift 1H spectra in 1D and also in 2D J‐correlated experiments, by effectively collapsing the multiplet structures. The present work extends these decoupling strategies to through‐space correlation experiments as well and describes two new pure‐shift ROESY pulse schemes with homodecoupling during acquisition, viz., homodecoupled broadband (HOBB)‐ROESY and homodecoupled band‐selective (HOBS)‐ROESY. Furthermore, the ROESY blocks suppress the undesired interferences of TOCSY cross peaks and other offsets. Despite the reduced signal sensitivity and prolonged experimental times, the HOBB‐ROESY is particularly useful for molecules that exhibit an extensive scalar coupling network spread over the entire 1H chemical shift range, such as natural/synthetic organic molecules. On the other hand, the HOBS‐ROESY is useful for molecules that exhibit well‐separated chemical shift regions such as peptides (NH, Hα and side‐chain protons). The HOBS‐ROESY sensitivities are comparable with the conventional ROESY, thereby saves the experimental time significantly. The power of these pure‐shift ROESY sequences is demonstrated for two different organic molecules, wherein complex conventional ROE cross peaks are greatly simplified with high resolution and sensitivity. The enhanced resolution allows deriving possibly more numbers of ROEs with better accuracy, thereby facilitating superior means of structural characterization of medium‐size molecules. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A method based on Fourier transform infrared (FTIR) transmission spectra is proposed to measure the crystallinity of isotactic polypropylene (iPP) samples. The method parameters were tuned as compared with wide‐angle X‐ray scattering measurements performed on test samples characterized by different crystallinity values obtained by solidification of thin iPP films under several cooling rates in a homemade device. The FTIR dichroic ratio measurements were adopted to measure crystalline and average Hermans' orientation factors of iPP samples obtained by film casting. The crystalline orientation measurement method was validated as compared with the birefringence measurement. The techniques were successfully used in real time during some film‐casting runs with a suitably modified FTIR system made of a spectrometer equipped with two optical guidelines and an external detector. Real‐time measurements are reported and discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 998–1008, 2003  相似文献   

12.
A novel molecularly imprinted sensor was firstly prepared based on a carbon nanotubes/graphene composite modified carbon electrode (MIPs/CNT/GP/CE) for the selective determination of bovine serum albumin. The molecularly imprinted sensor was tested by differential pulse voltammetry (DPV) to investigate the relationship between the response current and bovine serum albumin concentration. The results showed that a wide linear range (1.0×10?4 to 1.0×10?10 g mL?1) for the detection of bovine serum albumin with a low detection limit of 6.2×10?11 g mL?1 for S/N=3 was obtained. The novel imprinted sensor exhibited high selectivity, sensitivity, and reproducibility, which provided an applicable way for sensor development.  相似文献   

13.
The effects of heteroatom‐containing ferrocene catalysts on the materials produced from chemical vapour deposition (CVD) floating catalyst synthesis were investigated. Specifically, the influence of nitrogen‐ and oxygen‐containing ferrocenoyl imidazolide and (N‐phenylcarbamoyl)ferrocene, and sulfur‐ and oxygen‐containing S,S‐bis(ferrocenylmethyl)dithiocarbonate on the structural morphology and distribution of the products as well as properties such as the thermal stability and crystallinity were studied. In addition, the influence of reaction parameters such as catalyst concentration and temperature were also investigated. The nitrogen‐containing catalysts produced N‐doped multi‐walled carbon nanotubes (N‐MWCNTs), whereas the sulfur‐containing catalyst produced primarily nano‐ and microspheres. A concentration of 2.5 wt% ferrocenoyl imidazolide was shown to be optimal for the synthesis of MWCNTs at 850 °C, with very low metal iron residue, highest thermal stability and highest yield (95%). In general, bamboo compartment length for N‐doped MWCNTs increased with temperature. Crystallinity trends were shown to be independent of catalyst and catalyst concentration in all cases and only dependent on temperature. The average diameter for MWCNTs was shown to be dependent on temperature, choice of catalyst and catalyst concentration in all cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The assembly of alternating DNA and positively charged poly‐(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer‐by‐layer adsorption has been studied. Real time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. The results indicate that the uniform multilayer can be obtained on the poly‐(ethylenimine) (PEI) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by real‐time BIAcore technique, and the observed rate constant was calculated using a Langmuir model (kobs = (1.28 ± 0.08) × 10?2s?1).  相似文献   

15.
The molecular relaxation processes and structure of isotactic polystyrene (iPS) films were investigated with real‐time dielectric spectroscopy and simultaneous wide‐ and small‐angle X‐ray scattering. The purpose of this work was to explore the restrictions imposed on molecular mobility in the vicinity of the α relaxation (glass transition) for crystallized iPS. Isothermal cold crystallization at temperatures of Tc = 140 or 170 °C resulted in a sigmoidal increase of crystallinity with crystallization time. The glass‐transition temperature (Tg), determined calorimetrically, exhibited almost no increase during the first stage of crystal growth before impingement of spherulites. After impingement, the calorimetric Tg increased, suggesting that confinement effects occur in the latter stages of crystallization. For well‐crystallized samples, the radius of the cooperativity region decreased substantially as compared with the purely amorphous sample but was always smaller than the layer thickness of the mobile amorphous fraction. Dielectric experiments directly probed changes in the amorphous dipole mobility. The real‐time dielectric data were fitted to a Havriliak–Negami model, and the time dependence of the parameters describing the distribution of relaxation times and dielectric strength was obtained. The central dipolar relaxation time showed little variation before spherulite impingement but increased sharply during the second stage of crystal growth as confinement occurred. Vogel–Fulcher–Tammann analysis demonstrated that the dielectric reference temperature, corresponding to the onset of calorimetric Tg, did not vary for well‐crystallized samples. This observation agreed with a model in which constraints affect primarily the modes having longer relaxation times and thus broaden the glass‐transition relaxation process on the higher temperature side. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 777–789, 2004  相似文献   

16.
Phosphorylation is a post‐translational modification that is involved in many basic cellular processes and diseases, but is difficult to detect in real time with existing technologies. A label‐free detection of phosphorylation is reported in real time with self‐assembled nano‐oscillators. Each nano‐oscillator consists of a gold nanoparticle tethered to a gold surface with a molecular linker. When the nanoparticle is charged, the nano‐oscillator can be driven into oscillation with an electric field and detected with a plasmonic imaging approach. The nano‐oscillators measure charge change associated with phosphorylation of peptides attached onto a single nanoparticle, allowing us to study the dynamic process of phosphorylation in real time without antibodies down to a few molecules, from which Michaelis and catalytic rate constants are determined.  相似文献   

17.
The production of chemicals from lignocellulosic biomass provides opportunities to synthesize chemicals with new functionalities and grow a more sustainable chemical industry. However, new challenges emerge as research transitions from petrochemistry to biorenewable chemistry. Compared to petrochemisty, the selective conversion of biomass-derived carbohydrates requires most catalytic reactions to take place at low temperatures ( 300 °C) and in the condensed phase to prevent reactants and products from degrading. The stability of heterogeneous catalysts in liquid water above the normal boiling point represents one of the major challenges to overcome. Herein, we review some of the latest advances in the field with an emphasis on the role of carbon materials and carbon nanohybrids in addressing this challenge.  相似文献   

18.
A novel MB‐SWNT‐sol‐gel nanocomposite material was prepared by the sol‐gel process incorporating a redox mediator and carbon nanotubes. The electrocatalytic properties of the nanomaterial based sensor toward NADH oxidation were studied by electrochemical measurements. Significant enhancement of oxidation current is obtained at electrodes modified by MB‐SWNT‐sol‐gel in comparison with the analogous carbon black and/or graphite composite modified electrode. The usefulness of the nanocomposite material as a matrix for immobilizing enzymes is also demonstrated. Analytical parameters of D ‐lactate biosensors with and without SWNT in the hybrid film were compared demonstrating that performance of the biosensor was significantly improved when introducing SWNT.  相似文献   

19.
We developed a solid‐phase microextraction coupled to GC with electron‐capture detection method for the detection of acrylamide in food samples. Single‐walled carbon nanotubes and polypyrrole were electropolymerized onto a stainless‐steel wire as a coating, which possessed a homogeneous, porous, and wrinkled surface, chemical and mechanical stability, long lifespan (over 300 extractions), and good extraction efficiency for acrylamide. The linearity range between the signal intensity and the acrylamide concentration was found to be in the range 0.001–1 μg/mL, and the coefficient of determination was 0.9985. The LOD, defined as three times the baseline noise, was 0.26 ng/mL. The reproducibility for each single fiber (n = 6) and the fiber‐to‐fiber (n = 5) repeatability prepared in the same batch were less than 4.1 and 11.2%, respectively.  相似文献   

20.
Preparation and analysis of morphology, mechanical, and electrical properties of nanocomposites based on ethylene vinyl acetate (EVA) copolymer and commercial multiwalled carbon nanotubes (CNTs) was achieved. The used techniques for obtaining nanocomposites were the conventional melt‐mixing and the in situ ethylene polymerization/coating reaction, as catalyzed directly from CNT surface, with different polyethylene content (i.e. 55.0% and 66.6%). Nanocomposites were also prepared using crude CNTs. The incorporation in the molten state of such polyethylene surface‐coated CNTs, used as “masterbatch,” in EVA was demonstrated a good strategy for allowing the complete destructuring of the native bundle‐like aggregates, leading to the preparation of polymer nanocomposites with largely improved properties, even at very low nanofiller content. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号