首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A frequently utilized method of data quantification in Western blot analysis is comparison of the protein of interest with a house keeping gene or control protein. Commonly used proteins include β‐actin, glyceraldehyde 3 phosphate dehydrogenase (GAPDH), and α‐tubulin. Various reliability issues have been raised when using this technique for data analysis—particularly when investigating protein expression changes during development and in disease states. In this study, we have demonstrated that β‐actin, GAPDH, and α‐tubulin are not appropriate controls in the study of development and hypoxic‐ischemic induced damage in the piglet brain. We have also shown that using an in‐house pooled standard, loaded on all blots is a reliable method for controlling interassay variability and data normalization in protein expression analysis.  相似文献   

2.
Levels of a reference protein must be the same as a proportion of total protein in all tissues and, in the study of human diseases, cannot vary with factors such as age, gender or disease pathophysiology. It is increasingly apparent that there may be few, if any, proteins that display the characteristics of a reference protein within the human central nervous system (CNS). To begin to challenge this hypothesis, we used Western blotting to compare variance in levels of the “gold standard” reference protein, β‐actin, in Brodmann's area 9 from 194 subjects to variance of total transferred protein measured as intensity of Ponceau S staining. The coefficient of variance of sum intensity measurements for β‐actin levels across all donors was 47% compared to 24 and 27% for the sum intensity of Ponceau S staining measured using two different detection techniques. These data strongly suggest that the level of β‐actin, proportional to total protein, is not constant in human cortex which raises further doubt about the use of reference proteins to normalise data in human CNS studies. Considering our data, we suggest an alternative approach to presenting data from Western blotting of human CNS.  相似文献   

3.
In the present work, a new electrochemical strategy for the sensitive and specific detection of soluble β‐amyloid Aβ(1–40/1–42) peptides in a rat model of Alzheimer’s disease (AD) is described. In contrast to previous antibody‐based methods, β‐amyloid(1–40/1–42) was quantified based on its binding to gelsolin, a secretory protein present in the cerebrospinal fluid (CSF) and plasma. The level of soluble β‐amyloid peptides in the CSF and various brain regions were found with this method to be lower in rats with AD than in normal rats.  相似文献   

4.
β‐barrel membrane proteins are key components of the outer membrane of bacteria, mitochondria and chloroplasts. Their three‐dimensional structure is defined by a network of backbone hydrogen bonds between adjacent β‐strands. Here, we employ hydrogen–deuterium (H/D) exchange in combination with NMR spectroscopy and mass spectrometry to monitor backbone hydrogen bond formation during folding of the outer membrane protein X (OmpX) from E. coli in detergent micelles. Residue‐specific kinetics of interstrand hydrogen‐bond formation were found to be uniform in the entire β‐barrel and synchronized to formation of the tertiary structure. OmpX folding thus propagates via a long‐lived conformational ensemble state in which all backbone amide protons exchange with the solvent and engage in hydrogen bonds only transiently. Stable formation of the entire OmpX hydrogen bond network occurs downhill of the rate‐limiting transition state and thus appears cooperative on the overall folding time scale.  相似文献   

5.
Dittmer A  Dittmer J 《Electrophoresis》2006,27(14):2844-2845
Beta-actin is often used as a loading control in Western blot analysis. We analyzed the ability of beta-actin-specific antibodies to recognize differences in protein loading. We found that, at higher total protein loads as required for the detection of low-abundance proteins, beta-actin-specific antibodies failed to distinguish differences in actin protein levels. Diluting the antibody working solution or changing the incubation time had little effect on this phenomenon. This shows that beta-Actin is not a reliable loading control in Western blot analysis. In general, it appeared that, at longer incubation times, antibodies seem to be less able to pick up differences in the level of its target protein.  相似文献   

6.
Prediction of membrane spanning segments in β‐barrel outer membrane proteins (OMP) and their topology is an important problem in structural and functional genomics. In this work, we propose a method based on radial basis networks for predicting the number of β‐strands in OMPs and identifying their membrane spanning segments. Our method showed a leave‐one‐out cross validation accuracy of 96% in a set of 28 OMPs, which have the range of 8–22 β‐strand segments. The β‐strand segments in OMPs and the residues in membrane spanning segments are correctly predicted with the accuracy of 96% and 87%, respectively. We have developed a web server, TMBETAPRED‐RBF for predicting the transmembrane β‐strands from amino acid sequence and it is available at http://rbf.bioinfo.tw/~sachen/tmrbf.html . We suggest that our method could be an effective tool for predicting the membrane spanning regions and topology of β‐barrel membrane proteins. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

7.
A method is described to separate α‐ from β‐arylalanines by ligand exchange chromatography on a nickel nitrilotriacetate agarose column with UV monitoring of the effluent. Separate mixtures containing an α‐ and β‐arylalanine pair (1 mg of each) were individually loaded onto the nickel resin pre‐equilibrated with the mobile phase at room temperature, and the amino acids were eluted from the column with a gradient from pH 12.0–8.0. The β‐arylalanines eluted first, followed by the α‐isomers. The four α/β‐amino acid pairs tested were well separated with baseline resolution. An aliquot of each fraction was chemically treated to derivatize the amino acids to their N‐acyl methyl ester analogs, and their identities were confirmed by GC/MS analysis. The sample recovery was quantitative (>98%), and the column matrix was very resilient, as demonstrated by consistent separation of the solutes after ~100 preparative cycles.  相似文献   

8.
In the early detection of rheumatoid arthritis (RA) synthetic filaggrin peptides serve as antigens for rheumatoid‐specific autoantibodies (anti‐citrullinated peptide antibody, ACPA) in ELISA tests. In this work we present a peptide that exhibits the binding epitope of ACPA in the form of a stable folding β‐hairpin. The homogeneity of the peptide folding was confirmed by NMR spectroscopy and might lead to the first proposed structure of the antibody‐bound conformation of the epitope.  相似文献   

9.
The mimicry of protein‐sized β‐sheet structures with unnatural peptidic sequences (foldamers) is a considerable challenge. In this work, the de novo designed betabellin‐14 β‐sheet has been used as a template, and α→β residue mutations were carried out in the hydrophobic core (positions 12 and 19). β‐Residues with diverse structural properties were utilized: Homologous β3‐amino acids, (1R,2S)‐2‐aminocyclopentanecarboxylic acid (ACPC), (1R,2S)‐2‐aminocyclohexanecarboxylic acid (ACHC), (1R,2S)‐2‐aminocyclohex‐3‐enecarboxylic acid (ACEC), and (1S,2S,3R,5S)‐2‐amino‐6,6‐dimethylbicyclo[3.1.1]heptane‐3‐carboxylic acid (ABHC). Six α/β‐peptidic chains were constructed in both monomeric and disulfide‐linked dimeric forms. Structural studies based on circular dichroism spectroscopy, the analysis of NMR chemical shifts, and molecular dynamics simulations revealed that dimerization induced β‐sheet formation in the 64‐residue foldameric systems. Core replacement with (1R,2S)‐ACHC was found to be unique among the β‐amino acid building blocks studied because it was simultaneously able to maintain the interstrand hydrogen‐bonding network and to fit sterically into the hydrophobic interior of the β‐sandwich. The novel β‐sandwich model containing 25 % unnatural building blocks afforded protein‐like thermal denaturation behavior.  相似文献   

10.
Double helices are not common in polypeptides and proteins except in the peptide antibiotic gramicidin A and analogous l,d ‐peptides. In contrast to natural polypeptides, remarkable β‐double‐helical structures from achiral γ‐peptides built from α,β‐unsaturated γ‐amino acids have been observed. The crystal structures suggest that they adopted parallel β‐double helical structures and these structures are stabilized by the interstrand backbone amide H‐bonds. Furthermore, both NMR spectroscopy and fluorescence studies support the existence of double‐helical conformations in solution. Although a variety of folded architectures featuring distinct H‐bonds have been discovered from the β‐ and γ‐peptide foldamers, this is the first report to show that achiral γ‐peptides can spontaneously intertwine into β‐double helical structures.  相似文献   

11.
The incorporation of β‐amino acid residues into the antiparallel β‐strand segments of a multi‐stranded β‐sheet peptide is demonstrated for a 19‐residue peptide, Boc‐LVβFVDPGLβFVVLDPGLVLβFVV‐OMe (BBH19). Two centrally positioned DPro–Gly segments facilitate formation of a stable three‐stranded β‐sheet, in which β‐phenylalanine (βPhe) residues occur at facing positions 3, 8 and 17. Structure determination in methanol solution is accomplished by using NMR‐derived restraints obtained from NOEs, temperature dependence of amide NH chemical shifts, rates of H/D exchange of amide protons and vicinal coupling constants. The data are consistent with a conformationally well‐defined three‐stranded β‐sheet structure in solution. Cross‐strand interactions between βPhe3/βPhe17 and βPhe3/Val15 residues define orientations of these side‐chains. The observation of close contact distances between the side‐chains on the N‐ and C‐terminal strands of the three‐stranded β‐sheet provides strong support for the designed structure. Evidence is presented for multiple side‐chain conformations from an analysis of NOE data. An unusual observation of the disappearance of the Gly NH resonances upon prolonged storage in methanol is rationalised on the basis of a slow aggregation step, resulting in stacking of three‐stranded β‐sheet structures, which in turn influences the conformational interconversion between type I′ and type II′ β‐turns at the two DPro–Gly segments. Experimental evidence for these processes is presented. The decapeptide fragment Boc‐LVβFVDPGLβFVV‐OMe (BBH10), which has been previously characterized as a type I′ β‐turn nucleated hairpin, is shown to favour a type II′ β‐turn conformation in solution, supporting the occurrence of conformational interconversion at the turn segments in these hairpin and sheet structures.  相似文献   

12.
Multivalent mannose‐functionalized nanoparticles self‐assembled from amphiphilic β‐cyclodextrins (β‐CDs) facilitate the targeted delivery of anticancer drugs to specific cancer cells. Doxorubicin (DOX)‐loaded nanoparticles equipped with multivalent mannose target units were efficiently taken up via receptor‐mediated endocytosis by MDA‐MB‐231 breast cancer cells that overexpress the mannose receptor. Upon entering the cell, the intracellular pH causes the release of DOX, which triggers apoptosis. Targeting by multivalent mannose significantly improved the capability of DOX‐loaded nanoparticles to inhibit the growth of MDA‐MB‐231 cancer cells with minimal side effects in vivo. This targeted and controlled drug delivery system holds promise as a nanotherapeutic for cancer treatment.  相似文献   

13.
Incorporation of silicon‐containing amino acids in peptides is known to endow the peptide with desirable properties such as improved proteolytic stability and increased lipophilicity. In the presented study, we demonstrate that incorporation of β‐silicon‐β3‐amino acids into the antimicrobial peptide alamethicin provides the peptide with improved membrane permeabilizing properties. A robust synthetic procedure for the construction of β‐silicon‐β3‐amino acids was developed and the amino acid analogues were incorporated into alamethicin at different positions of the hydrophobic face of the amphipathic helix by using SPPS. The incorporation was shown to provide up to 20‐fold increase in calcein release as compared with wild‐type alamethicin.  相似文献   

14.
All‐atom molecular mechanics (MM) force field parameters are developed for the backbone of acyclic β‐amino acid using an improved version of the multiobjective evolutionary algorithm (MOEA). The MM model is benchmarked using β3‐homo‐Alanine (β3‐hAla) diamide in water with SCC‐DFTB/MM simulations as the reference. Satisfactory agreements are found between the MM and SCC‐DFTB/MM results regarding the distribution of key dihedral angles for the β3‐hAla diamide in water. The MM model is further applied to a β‐hepta‐peptide in methanol solution. The calculated NOE values and 3J coupling constants averaged over different trajectories are consistent with experimental data. By contrast, simulations using parameters directly transferred from the CHARMM22 force field for proteins lead to much worse agreement, which highlights the importance of careful parameterization for non‐natural peptides, for which the improved MOEA is particularly useful. Finally, as an initial application of the new force field parameters, the behaviors of a short random copolymer consisting of β amino acids in bulk solution and membrane/water interface are studied using a generalized Born implicit solvent model (GBSW). Results for four selected sequences show that segregation of hydrophobic and cationic groups occur easily at the membrane/solution interface for all sequences. The sequence that features alternating short blocks exhibits signs of lower stability at the interface compared to other sequences. These results confirm the hypothesis in recent experimental studies that β‐amino‐acid based random copolymers can develop a high degree of amphiphilicity without regular three‐dimensional structure. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

15.
Density functional theory calculations suggest that β‐turn peptide segments can act as a novel dual‐relay elements to facilitate long‐range charge hopping transport in proteins, with the N terminus relaying electron hopping transfer and the C terminus relaying hole hopping migration. The electron‐ or hole‐binding ability of such a β‐turn is subject to the conformations of oligopeptides and lengths of its linking strands. On the one hand, strand extension at the C‐terminal end of a β‐turn considerably enhances the electron‐binding of the β‐turn N terminus, due to its unique electropositivity in the macro‐dipole, but does not enhance hole‐forming of the β‐turn C terminus because of competition from other sites within the β‐strand. On the other hand, strand extension at the N terminal end of the β‐turn greatly enhances hole‐binding of the β‐turn C terminus, due to its distinct electronegativity in the macro‐dipole, but does not considerably enhance electron‐binding ability of the N terminus because of the shared responsibility of other sites in the β‐strand. Thus, in the β‐hairpin structures, electron‐ or hole‐binding abilities of both termini of the β‐turn motif degenerate compared with those of the two hook structures, due to the decreased macro‐dipole polarity caused by the extending the two terminal strands. In general, the high polarity of a macro‐dipole always plays a principal role in determining charge‐relay properties through modifying the components and energies of the highest occupied and lowest unoccupied molecular orbitals of the β‐turn motif, whereas local dipoles with low polarity only play a cooperative assisting role. Further exploration is needed to identify other factors that influence relay properties in these protein motifs.  相似文献   

16.
Many therapeutically relevant protein–protein interactions contain hot‐spot regions on secondary structural elements, which contribute disproportionately to binding enthalpy. Mimicry of such α‐helical regions has met with considerable success, however the analogous approach for the β‐strand has received less attention. Presented herein is a foldamer for strand mimicry in which dipolar repulsion is a central determinant of conformation. Computation as well as solution‐ and solid‐phase data are consistent with an ensemble weighted almost exclusively in favor of the desired conformation.  相似文献   

17.
Transmembrane β‐peptides are promising candidates for the design of well‐controlled membrane anchors in lipid membranes. Here, we present the synthesis of transmembrane β‐peptides with and without tryptophan anchors, as well as a novel iodine‐labeled d ‐β3‐amino acid. By using one or more of the heavy‐atom labeled amino acids as markers, the orientation of the helical peptide was inferred based on the electron‐density profile determined by X‐ray reflectivity. The β‐peptides were synthesized through manual Fmoc‐based solid‐phase peptide synthesis (SPPS) and reconstituted in unilamellar vesicles forming a right‐handed 314‐helix secondary structure, as shown by circular dichroism spectroscopy. We then integrated the β‐peptide into solid‐supported membrane stacks and carried out X‐ray reflectivity and grazing incidence small‐angle X‐ray scattering to determine the β‐peptide orientation and its effect on the membrane bilayers. These β‐peptides adopt a well‐ordered transmembrane motif in the solid‐supported model membrane, maintaining the basic structure of the original bilayer with some distinct alterations. Notably, the helical tilt angle, which accommodates the positive hydrophobic mismatch, induces a tilt of the acyl chains. The tilted chains, in turn, lead to a membrane thinning effect.  相似文献   

18.
A digestion protocol was applied in triplicate by ten laboratories, simulating in vivo gastric and duodenal conditions. The intra‐ and inter‐laboratory variability in the kinetics of protein degradation was quantified, focussing on the digestion of β‐casein under gastric conditions, and of β‐lactoglobulin (β‐Lg) under duodenal conditions. The addition of surfactants such as phosphatidylcholine (PC) in the digestion mix was also evaluated. Identification and quantification of peptide bands on SDS‐PAGE gels formed the basis for analysis. An average intensity loss of 69% (SD=13.5) at 5 min (89% at 10 min, with SD=5.5) was observed for β‐casein, whereas the β‐Lg duodenal digestion showed an 82% loss at 30 min (SD=14.2). Constant rates of first‐order reactions showed that for fast reactions, inaccuracies in the time of first sampling contributed to the variability, which were also affected by image quality, saturation, and the splitting of time courses across gels. Breakdown products for β‐casein included ten other polypeptides, with four detected in all and two in most gels, and for β‐Lg ten polypeptides, with five detected in most, and two in two‐third of the cases. Addition of PC in the gastric phase led to β‐Lg intensity loss only a quarter as large as without PC and altered β‐Lg proteolysis in the duodenal compartment.  相似文献   

19.
Peptides that adopt β‐helix structures are predominantly found in transmembrane protein domains or in the lipid bilayer of vesicles. Constructing a β‐helix structure in pure water has been considered difficult without the addition of membrane mimics. Herein, we report such an example; peptide 1 self‐assembles into a supramolecular β‐helix in pure water based on charge interactions between the individual peptides. Peptide 1 further showed intriguing transitions from small particles to helical fibers in a time‐dependent process. The fibers can be switched to vesicles by changing the pH value.  相似文献   

20.
We report on the characteristics of the radical‐ion‐driven dissociation of a diverse array of β‐amino acids incorporated into α‐peptides, as probed by tandem electron‐capture and electron‐transfer dissociation (ECD/ETD) mass spectrometry. The reported results demonstrate a stronger ECD/ETD dependence on the nature of the amino acid side chain for β‐amino acids than for their α‐form counterparts. In particular, only aromatic (e.g., β‐Phe), and to a substantially lower extent, carbonyl‐containing (e.g., β‐Glu and β‐Gln) amino acid side chains, lead to N? Cβ bond cleavage in the corresponding β‐amino acids. We conclude that radical stabilization must be provided by the side chain to enable the radical‐driven fragmentation from the nearby backbone carbonyl carbon to proceed. In contrast with the cleavage of backbones derived from α‐amino acids, ECD of peptides composed mainly of β‐amino acids reveals a shift in cleavage priority from the N? Cβ to the Cα? C bond. The incorporation of CH2 groups into the peptide backbone may thus drastically influence the backbone charge solvation preference. The characteristics of radical‐driven β‐amino acid dissociation described herein are of particular importance to methods development, applications in peptide sequencing, and peptide and protein modification (e.g., deamidation and isomerization) analysis in life science research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号